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ABSTRACT

The problem of estimating frequencies of sinusoids in noise has
been studied intensively by the signal processing community during
the last decades. Traditionally high resolution subspace-based tech-
niques suffer from high computational complexity, and generally
sensitive to the colored noise. We present here a frequency-domain
based subspace parameter estimation algorithm termed frequency-
selective MUltiple SIgnal Classification (F-MUSIC) that is based on
the signal and noise subspace orthogonality property. The method is
computationally efficient in providing estimates in the selected sub-
band compared to the classic MUSIC. The performance of F-MUSIC
is evaluated and compared to both MUSIC and Cramér-Rao lower
bound (CRLB). In a low signal to noise ratio (SNR) with colored
noise scenarios, F-MUSIC outperforms MUSIC.

Index Terms— Frequency estimation, subband, subspace or-
thogonality, colored noise.

1. INTRODUCTION

An extensively studied problem in signal processing is the estimation
of parameters in complex exponentials embedded in the white noise.
The model is defined as:

y(t) =
n̄

∑

k=1

βkejωkt + e(t), βk = αkejθk , (1)

for t = 0, . . . , N −1, whereαk is the real amplitude of the complex
exponentials,ωk is the frequency parameters,θk is the phase of the
harmonics,̄n is the number of complex exponentials, ande(t) de-
notes the complex symmetric white Gaussian noise. The estimation
problem associated with the real case can be cast as (1) by the use of
the analytic signals, which is valid when there is little or no spectral
content of interest near0 andπ.

The objective considered here is to estimate the parameters of
y(t) based on subspace techniques. This problem has been studied
by many researchers during the past decades, and many algorithms
have been suggested. One common approach of solving the problem
is to first estimate the model parameters based on a sample covari-
ance matrix, and in a second step either directly calculate the fre-
quencies or find peaks on the constructed spectrum [1]. Parametric
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methods have a superior accuracy compared to non-parametric meth-
ods, but drawbacks are often the high computational complexity and
the sensitivity to colored noise.

In many practical applications, harmonics of interest reside in a
subband, while the disturbance signal lies outside. The filtering and
the pre-whitening are standard methods to suppress interferences be-
fore frequency estimation. A serious drawback of the time-domain
filtering on short finite sequences is that the transients from filter-
ing may disturb the frequency estimates. While in the noise pre-
whitening, the statistical parameters of the noise needs to be known
in advance or to be estimated. Furthermore, the efficiency of the
covariance matrix based subspace estimator will decrease with an
increased length of the observed signal. Also when the number of
sinusoids are too large compared to the harmonics of interest. In-
stead of deriving a parametric model from the time-domain sam-
ple covariance estimates, a new model based on a sub-set of data
from the discrete-time Fourier transform (DFT) termed frequency-
selective (FS) data model has been formulated in [2, 3]. The result-
ing algorithm is termed Frequency-selective ESPRIT (F-ESPRIT)
which has the advantage to be computationally efficient compared
to the standard ESPRIT.

In this paper we will further develop the concept used in the
F-ESPRIT to propose a new Frequency-selective MUltiple SIgnal
Classification (F-MUSIC) algorithm using ideas from the classical
MUSIC based on the noise signal subspace orthogonality principle
which is a general property. Recently, an algorithm on single and
multi pitch estimator has been proposed [4, 5] where the essence
of the algorithm is based on the subspace orthogonality property
which makes this classical principle especially interesting. How-
ever, the proposed method F-MUSIC will be more computationally
efficient and possibly more robust toward the colored noise than
classical MUSIC. Even in the case of estimating the same num-
ber of frequency parameters F-MUSIC can still be computationally
more efficient than MUSIC. By dividing the signal spectrum intoQ
equally spaced subbands and considering each band as an individ-
ual subproblem, we get a computationally more efficient approach
than estimating the parameters from the covariance matrix model
associated with MUSIC. The potential application areas using the
proposed algorithm could be in speech/audio coding, musical instru-
ment retrieval and time-scale modification.

The remaining part of the paper is organized as follows. In Sec-
tion 2, the frequency-domain based model is described and the in-
volved equations will be defined. In Section 3 the proposed method
is described, and in Section 4 numerical examples demonstrating the
estimation performance and noise robustness are presented. Finally,
discussions and conclusions are given in Section 5 and 6, respec-
tively.



2. FREQUENCY-SELECTIVE DATA MODEL

An FS data model can be formulated using the equations stated in [1]
where samples from DFT are used as input data. Let us assume that
the component of interests lie in a prespecified subband composed
of the following Fourier frequencies:

{

2π
N

k1
2π
N

k2 . . . 2π
N

kM

}

, (2)

where{k1 . . . kM} areM given consecutive integers. The number
of componentsn of (1) lying in the subband specified by (2) is as-
sumed to ben ≤ n̄.

In the derivation of F-MUSIC, the following definitions will be
used:

wk = ej 2π

N
k, k = 0, 1, . . . , N − 1 (3)

uk =
[

wk . . . wm
k

]T
(4)

vk =
[

1 wk . . . wN−1
k

]T
(5)

y =
[

y(0) . . . y(N − 1)
]T

(6)

Yk = v∗

ky, k = 0, 1, . . . , N − 1 (7)

e =
[

e(0) . . . e(N − 1)
]T

(8)

Ek = v∗

ke, k = 0, 1, . . . , N − 1, (9)

whereuk is the phase shift vector,vk is the Fourier vector,y is the
signal vector,e is the noise vector,∗ is the complex conjugate, trans-
poseT is the operator of vector transpose, andm is a user parameter
which is limited toM > m > n. Previous experience of MUSIC,
and other similar approaches have shown that the user parameterm
should be selected as large as possible in order to increase the lin-
early independent vectors of the noise subspace, but less thanM in
order to still achieve a correct estimate of the FS data model. Fur-
thermore, to express the components of the signal, vectorsa(ωk) and
b(ωk) are introduced and denoted as:

a(ωk) =
[

ejωk . . . ejmωk

]T
(10)

b(ωk) =
[

1 ejωk . . . ej(N−1)ωk

]T
. (11)

The key equation for the FS data model involving the FFT sequence
Yk is denoted as:

ukYk = [a(ω1) . . . a(ωn̄)]







β1v∗

kb(ω1)
...

βn̄v∗

kb(ωn̄)






+Γuk +ukEk, (12)

whereΓ ∈ C
m×m is a known matrix. The matrixΓ will not be

described because it has no importance for what follows. For details
we refer to [1].

Let {wk}
n

k=1 denote the frequencies of complex exponentials.
To separate the terms corresponding to the component of interest
from those associated with the interfering components in (12), we
use the notation:

A =
[

a(ω1) . . . a(ωn)
]

(13)

xk =







β1v∗

kb(ω1)
...

βnv∗

kb(ωn)






, (14)

for the component of interest, and similarlỹA andx̃k for the other
components which are the leakage signal in the subband. A compact
matrix form of (12) for{k1 . . . kM} is

Y = AX + ΓU + ÃX̃ + E, (15)

where matrices in (15) are defined as:

Y =
[

uk1
Yk1

. . . ukM
YkM

]

(16)

E =
[

uk1
Ek1

. . . ukM
EkM

]

(17)

U =
[

uk1
. . . ukM

]

(18)

X =
[

xk1
. . . xkM

]

, (19)

with Y ∈ C
m×M . In (15) the second term is eliminated by postmul-

tiplying with a projection matrix,

Π
⊥
⋃ = I − U∗(UU∗)−1U, (20)

which is the orthogonal projection matrix onto the null space ofU.
The third and fourth terms in (15) are, respectively, the out-of-band
components and the noise term.

3. PROPOSED METHOD F-MUSIC

The starting point for deriving the proposed estimation algorithm F-
MUSIC is the following equation [1]:

YΠ
⊥
⋃ = AXΠ

⊥
⋃ + ÃX̃Π

⊥
⋃ + EΠ

⊥
⋃ . (21)

Let the matrixYΠ
⊥
⋃ be decomposed into subspaces using either

singular value decomposition (SVD) or eigenvalue decomposition
(EVD), where the decomposed noise and signal subspaces are de-
noted as:

YΠ
⊥
⋃ =

[

S G
]

[

ΣS 0
0 ΣG

] [

VH
S

VH
G

]

. (22)

Here,ΣS denotes a diagonal matrix with then largest singular val-
ues. LetS be the orthonormal signal subspace associated withn
principal singular values, andG be the orthonormal noise singular
vectors associated withm − n singular values. The interference
terms ÃX̃ and E will be attenuated by the projection matrix, but
the least significant singular values will still provides us with a in-
dication to the noise subspace. By definition, the spaces spanned
by S and G are orthogonal. The vectors in the signal subspace
can be modeled by the linearly independent Vandermonde vectors
{a(ωk)}n

k=1.
The spectral F-MUSIC is formed by:

P (ω) =
1

|a∗(ω)GG∗a(ω)|2
, (23)

whereω ∈
[

2π
N

k1,
2π
N

kM

]

. In order to achieve high spectral resolu-
tion of the spectrogram, the frequency samplesω in (23) should be
more closely sampled than the number of DFT points used inYk.

For the frequency estimation, the root F-MUSIC algorithm can
be formed by determining the frequency estimates as the angular
positions of then roots of the equation

aT (z−1)GG∗a(z) = 0, (24)

which are located nearest to the unit circle. In (24),a(z) is given by

a(z) =
[

z−1 z−2 . . . z−m
]T

, z = e−jω. (25)

The algorithm can be summarized in the following steps:

1. CreateYΠ
⊥
⋃ from the observed data.

2. Calculate the SVD ofYΠ
⊥
⋃ to form G from singular vectors

associated with them − n least significant singular values.
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Fig. 1. The calculated RMSE of F-MUSIC compared with MUSIC
and CRLB versus different SNR with white noise.

3. a) Spectral F-MUSIC: Calculate (23) for
ω ∈

[

2π
N

k1,
2π
N

kM

]

.

OR

b) Root F-MUSIC: Determine frequency estimates as
the angular positions of then roots of (24).

4. NUMERICAL RESULTS

In this section we consider three numerical examples. The degra-
dation of the estimation accuracy and the computational savings are
demonstrated on the proposed algorithm in the case of signal em-
bedded in white noise scenario. Selection of the user parameter of
F-MUSIC for white noise scenario is investigated, and the robust-
ness against colored noise will be shown.

The signal setup used in the following examples consists of one
complex exponential embedded in noise with frequencyω1 = 0.1,
and amplitudeα1 = 1, and the observed data is a sequence of
N = 256 samples. The calculated root mean square estimation
errors (RMSE) of F-MUSIC are compared to both MUSIC and the
asymptotic Craḿer-Rao lower bound (CRLB). Signal-to-noise ratio
(SNR) is calculated using the definition in [6], in our examples:

SNR = 10 log10

α2
1

φ(ω1)
, (26)

with the functionφ(ω1) being the power spectrum of the noise at
frequencyω1. The asymptotic CRLB defined in [1] in the case of
one complex exponential embedded in noise is denoted as

CRLB =
6φ(ω1)

N3α2
1

. (27)

To get a fair comparison between MUSIC and the proposed method,
for each SNR, 100 Monte Carlo simulations were used with a uni-
form distributed phase between[0, 2π] and a new realization of the
noise is generated. The RMSE is computed for each simulation.

In the first example, a symmetric white Gaussian noise is used
with the SNR calculated using (26); withφ(ω1) denoting the vari-
ance of the white noise. The subband of F-MUSIC was kept fixed to
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Fig. 2. The calculated RMSE with different subband length, where
the SNR with white noise is fixed to20dB.

k1 = 0 andk32 = 31, and by experience the user parameter is set to
m = M/2 [1]. In MUSIC the model order of the covariance matrix
is selected to beN/2. The calculated RMSE versus SNR is plotted
in Fig. 1. It shows that the estimation performance of F-MUSIC is
a bit worse than classical MUSIC in the case of white noise. How-
ever, for many applications, the degraded performance might still be
attractive due to the computational savings. In F-MUSIC the compu-
tational complexity by selecting a subset of DFT samples with length
M is of orderO

(

M3
)

, where the complexity of MUSIC is of order
O

(

N3
)

. Based on the selected subband lengthM , a relative amount
of computational savings are achieved. In the case of full-band pro-
cessing, F-MUSIC can still be computationally superior to the classi-
cal MUSIC. Instead of solving the estimation problem directly from
the time-domain signal, the complexity can be reduced by splitting
the estimation problem into solving subproblems on each subband.
The total computational complexity of processing the entire signal
will then beO

(

N3/Q2
)

, whereQ is the total number of equally
spaced subbands. The trade off here is the estimation accuracies and
the computational savings.

Following numerical example is used to demonstrate the selec-
tion of the user parameter evaluated on various subband length. Here
SNR is fixed to20dB and length of the subband is defined ask1 = 0
andkM = M − 1, whereM varies from 8 to 256. The result is
shown in Fig. 2. For many applications, only a course estimate
of frequency is needed, in which the selection ofM is not crucial.
If, however, very accurate estimates are desired, the selection ofm
should be considered more carefully. Using the signal setup in this
example, the selection of the user parameterm is dependent on the
number of DFT points covered by the subband. In the case when
all DFT samples are used in the estimation, the performance of F-
MUSIC will then be the same as MUSIC.

In the last example, the robustness against colored noise will be
demonstrated. The objective here is to show that by isolating the esti-
mated signal in the subband, the interference from the colored noise
will be reduced. The same signal setup is used except that the white
noise is filtered with a second order AR process1/(1 + 0.3z−1 +
0.8z−2) is selected to give a colored noise spectrum. One realization
of the spectrum with SNR fixed at−3.6dB is shown in Fig. 3. SNR



Fig. 3. Magnitude spectrum of the signal in colored noise with SNR
fixed at -3.6dB.

for the colored noise is calculated using (26) with functionφ(ω1)
being the power spectrum of the filtered noise at frequencyω1. The
subband is specified atk1 = 0 to k16 = 15 which contains enough
samples to estimate the embedded signal, while keeps the main part
of the colored noise residing outside the subband. User parameters
in F-MUSIC and the model order in MUSIC are selected to beM/2
andN/2, respectively. RMSE of F-MUSIC compared to MUSIC
and the asymptotic colored CRLB are shown in Fig. 4. The graph
shows that MUSIC algorithm fails to operate under low SNR with
colored noise conditions while F-MUSIC can still achieve good es-
timates close to CRLB. The performance drop down of MUSIC can
be explained by the increased probability off erroneous estimate of
the signal subspace where part of the noise subspace is considered as
the signal subspace. A problem sometimes referred to as subspace
swapping; while F-MUSIC can avoid the problem by excluding in-
terference signals from the FS data model. We believe that excluding
the noise from the estimation problem as done here is a better ap-
proach than the noise pre-whitening. The F-MUSIC algorithm does
not require knowledge of the noise statistic. Only frequency regions
where the colored noise is concentrated on are of interest. This may
be easier than directly estimate noise parameters from the observed
signal, especially when the noise is non-stationary which is often the
case for speech and audio signals.

5. CONCLUSIONS

In this paper, a subspace-based frequency estimator termed F-
MUSIC has been proposed. This algorithm is a frequency-domain
based frequency estimator uses subspaces decomposed from the
FS data model, which is constructed from the observed DFT sam-
ples in the selected subband. The performance of F-MUSIC has
been evaluated and compared to both MUSIC and CRLB. In low
SNR with colored noise scenario, F-MUSIC outperforms MUSIC.
From the simulations of F-MUSIC, we conclude that in general
the price we pay for the reduced computational complexity and the
increased robustness against colored noise is a slightly reduction in
the estimation accuracy.
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Fig. 4. The calculated RMSE of F-MUSIC compared with MUSIC
and CRLB, versus different SNR with colored noise.
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