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ABSTRACT

We provide an amplitude-phase representation of the
dual-tree complex wavelet transform by extending the
fixed quadrature relationship of the dual-tree wavelets to
arbitrary phase-shifts using the fractional Hilbert trans-
form (fHT). The fHT is a generalization of the Hilbert
transform that extends the quadrature phase-shift action
of the latter to arbitrary phase-shifts—a real shift param-
eter controls this phase-shift action.

Next, based on the proposed representation and the
observation that the fHT operator maps well-localized
B-spline wavelets (that resemble Gaussian-windowed
sinusoids) into B-spline wavelets of the same order but
different shift, we relate the corresponding dual-tree
scheme to the paradigm of multiresolution windowed
Fourier analysis.

Index Terms— Fractional Hilbert Transform, Dual-
Tree Complex Wavelet Transform (DT-CWT), B-spline
Wavelet, Gabor Function.

1. INTRODUCTION

IN this paper, we study the family of fractional Hilbert
transforms that generalize the Hilbert transform op-

erator [1] by extending the phase-shift action cos(ω0x) !→
cos(ω0x+θ) of the latter from θ = −π/2 to any arbitrary
θ in [0, 2π]. More crucially, they exhibit simultaneous
translation and dilation invariance, which allows us to
integrate them easily into the multiresolution framework
of wavelets [cf. §2].

In particular, using the fHT as the generic phase-shift
operator, we propose a novel amplitude-phase interpre-
tation of the dual-tree complex wavelet transform. The
DT-CWT is a recent enhancement to the discrete wavelet
transform that has gained increasing popularity as a sig-
nal processing tool. This was originally introduced by
Kingsbury [2] to overcome the shift-variance problem of
the conventional discrete wavelet transform (DWT). The
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crucial observation that the dual-tree wavelets form an
approximate Hilbert transform (HT) pair was made by
Selesnick [3]; this consequently reduced the design of
different flavors of dual-tree wavelets to the construc-
tion of new HT pairs of wavelets [3, 4, 5]. We refer the
reader to the excellent tutorial [6] on the design and ap-
plication of the dual-tree transform.

The main goal of this paper is to formally link the
dual-tree paradigm with the amplitude-phase formalism
of Fourier analysis. Specifically, by identifying the dual-
tree wavelet pair (ψ, H ψ) with the complex wavelet

Ψ(x) = ψ(x) + jH ψ(x)

and, based on the polar representation cn = |cn|ejφn

of the complex dual-tree coefficients cn = 〈f, Ψn〉, we
establish the following representation

f(x) =
∑

|cn|ψn,τn(x), (1)

resembling the Fourier decomposition

g(x) =
∑

|cn| cos(nω0x + φn) (2)

of a periodic signal g(x) [cf. §3]. The significance of the
fHT is that the wavelet ψn,τn(x) in (1) is derived from
the reference wavelet ψn(x) via the transformation

ψn,τn(x) = Hτnψn(x),

where Hτn is the fHT operator corresponding to the shift
τn = φn/π. Finally, an explicit understanding of the
action of the fHT is arrived at for the particular fam-
ily of dual-tree transform involving HT pairs of B-spline
wavelets [5], that asymptotically converge to Gabor-like
functions [7].

2. THE FRACTIONAL HILBERT TRANSFORM

The fHT forms the cornerstone of the our subsequent dis-
cussion and we begin with a detailed study of its char-
acteristics. There exits several definitions of the fHT in
the signal processing and optics literature [8, 9, 10, 11];
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however, for reasons that will become obvious in the se-
quel, we propose an operator-based formulation involv-
ing the interpolation of the ‘quadrature’ identity opera-
tor I and HT operator H . In particular, we define the
fHT operator Hτ, corresponding to the shift parameter
τ ∈ R, as

Hτ = cos(πτ) I − sin(πτ) H . (3)

The above definition is equivalent to the formulations
used in [10, 11], but differs from the ones in [8, 9] up
to a complex chirp. The advantage of using the above
formulation will be evident in the sequel.

2.1. Characterization of the fHT

The fHT operator inherits most of the characteristic
features of the constituent identity and HT operators,
which happen to be two special members of the fHT
family; specifically, I = H0 and H = H−1/2. Based on
(3) and the properties of the identity and HT operator,
the following mathematical properties of the fHT can be
readily derived:

(P1) Hτ is linear and translation invariant; that is, it
acts as a convolution operator.
(P2) It commutes with dilations, so that (Hτf)(x/a) =
Hτ{f(·/a)}(x), for all a > 0.
(P3) It is unitary; i.e, ||Hτf|| = ||f||, for all f ∈ L2(R).
(P4) It acts as a phase-shift operator on pure sinusoids;
specifically, Hτ cos(ω0x) = cos(ω0x + πτ).
(P5) It satisfies the composition law Hτ1Hτ2 = Hτ1+τ2 .
In particular, Hm

τ = Hmτ, for any integer m.

The significance of (P3) is that the inverse fHT op-
erator is well-defined and is given by its own adjoint;
moreover, the property HτH−τ = H0 = I, yields the re-
lation H−1

τ = H∗
τ = H−τ. In this context, (P5) must then

be interpreted for any negative integer m = −n, n > 0,
as (H−1

τ )n = Hmτ. These composition properties are
succinctly captured by the following statement:

Proposition 2.1 The family of linear operators {Hτ}τ∈R
form a commutative group on L2(R).

Next, we introduce the following fractional extension
of the Bedrosian identity [12].

Theorem 2.2 (Generalized Bedrosian Identity) Let f(x)
and g(x) be real-valued functions such that the support of
f̂(ω) is restricted to (−Ω, Ω), and that ĝ(ω) vanishes for
|ω| < Ω, for some arbitrary frequency Ω. Then the fHT of
the product function f(x)g(x) can be expressed as

Hτ{f(x)g(x)} = f(x)Hτg(x). (4)

Proof. This follows as a consequence of the Bedrosian
identity H {f(x)g(x)} = f(x)H g(x), and the definition
of the fHT. Indeed, we have

Hτ{f(x)g(x)} = cos(πτ)f(x)g(x) − sin(πτ)H {f(x)g(x)}

= cos(πτ)f(x)g(x) − sin(πτ)f(x)H g(x)

= f(x)Hτg(x). !

An immediate consequence of theorem (2.2) and
property (P4) is that for a bandlimited signal ϕ(x) with
frequency support restricted to (−ω0, ω0), one has the
following modulation property

Hτ{ϕ(x) cos(ω0x)} = ϕ(x) cos(ω0x + πτ). (5)

It turns out that, similar to the Hilbert transform, the
fHT fits in well into the wavelet formalism. Following
the fact that the HT maps a wavelet into a wavelet, it
can be easily verified that the fHT of a wavelet basis is
a valid wavelet basis as well [5]. In particular, the im-
plications of the shift and dilation invariance is that the
fHT of shifted-dilated wavelets are wavelets shifted and
dilated by the same amount; these invariance properties
facilitate the incorporation of the fHT into the wavelet
framework.

3. AMPLITUDE-PHASE REPRESENTATION OF THE
DUAL-TREE TRANSFORM

Next, using the fHT as the phase-shift operator f(x) !→
Hτf(x), we provide a amplitude-phase interpretation of
the DT-CWT similar to the Fourier analysis of periodic
signals. The Fourier decomposition of a signal f(x) in
L2([0, T ]), in terms of pure sinusoids, is given by

f(x) = a0 + a1 cos(ω0x) + a2 cos(2ω0x) + · · ·
+ b1 sin(ω0x) + b2 sin(2ω0x) + · · · (6)

where ω0 (ω0T = 2π) is the fundamental frequency,
and where a0, a1, a2, . . . , b1, b2, . . . are the Fourier coef-
ficients corresponding to the different harmonics. Note
that this admits the following alternative representation

f(x) =
∑

|cn| cos(nω0x + φn)

=
∑

|cn|Hτn {cos(nω0x)}, (7)

based on the fHT, with cn = an − jbn = |cn|ejφn being
the polar representation of the complex Fourier coeffi-
cient cn =

〈
f(x), ejnω0x

〉
, and where τn = φn/π. The

role of the fHT in (7) is to provide the correct phase-
shifts to the reference functions {cos(nω0x)}.

Our present contribution is to transpose the amplitude-
phase representation to the DT-CWT, using quadrature
pairs of wavelet instead of the conjugate sinusoid-pairs:
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{cos(nω0x)} and {sin(nω0x)}. In particular, the DT-CWT
decomposes a signal f(x) in L2(R) using two parallel
wavelet bases {ψn}n∈N and {H ψn}n∈N—derived via
dilations and translations of the quadrature wavelets
ψ(x) and H ψ(x)—yielding the following equivalent
expansions

f(x) =

{∑
anψn(x), (Branch 1)∑
bnH ψn(x), (Branch 2)

(8)

The wavelet coefficients of the respective branches,
an = 〈f, ψ̃n〉 and bn = 〈f, H ψ̃n〉, are obtained via the
projection of the signal onto the corresponding analysis
(dual) wavelet bases {ψ̃n}n∈N and {H ψ̃n}n∈N, respec-
tively [5].

Based on the polar representation |cn|ejφn of the
complex wavelet coefficients cn = (an − jbn)/2, and
by combining the expansions in (8), we arrive at the
following amplitude-phase representation

f(x) =
1
2

∑ (
anψn(x) + bnH ψn(x)

)

=
∑

|cn|
(

cos φnψn(x) − sin φnH ψn(x)
)

=
∑

|cn|ψn,τn(x), (9)

where the shift parameters are specified as τn = φn/π.
The key identification is that the transformed wavelets

ψn,τn(x) = Hτnψn(x) in (9)—the ‘phase-shifted’ ver-
sions of the primary wavelets {ψn}—play a role similar
to the ‘optimally’ displaced sinusoids {cos(nω0x + φn)}
in (7). Based on this representation, one can then in-
terpret the dual-tree transform f(x) !→ {(|cn|, φn)}n∈N
as some form of multiresolution amplitude-phase anal-
ysis of the signal f(x). Moreover, as discussed next, the
wavelets ψn,τn(x) in (9) can be explicitly characterized
for particular flavors of spline wavelets.

4. WINDOWED FOURIER-LIKE MULTIRESOLUTION
ANALYSIS

The theoretical construction of exact HT pairs of biorthog-
onal wavelets and Gabor-like wavelets using B-spline
wavelets, in particular, was recently discussed in [5].
It turns out that the fHT of a B-spline wavelet can be
well-characterized as well.

The semi-orthogonal B-spline wavelet is of special in-
terest as it is better localized in space than its orthogonal
counterpart; it exhibits remarkable joint time-frequency
localization properties [7]. Starting from the fractional
B-spline scaling function βα

τ (x), the transfer function of
the wavelet filter that generates the ‘shortest’ B-spline
wavelet ψα

τ (x) (orthogonal to the shifts of βα
τ (x) but not

to its own shifts) is then specified as

G(ejω) = ejωA(−ejω)H(−e−jω), (10)

where H(ejω) and A(ejω) are the refinement filter and
autocorrelation filter of βα

τ (x), respectively [7, 13].
The associated biorthogonal system comprises of the
(unique) dual-spline scaling function β̊α

τ (x) and the dual
wavelet ψ̃α

τ (x), satisfying the biorthogonality condition
〈ψα

τ , ψ̃α
τ (·−n)〉 = δ[n]. It turns out that the (α, τ)-family

of fractional B-spline wavelets [13] and their duals are
closed with respect to the fHT operator.

Proposition 4.1 The fHT of a B-spline wavelet is another
B-spline wavelet of same order but different shift:

Hτ̄ψα
τ (x) = ψα

τ−τ̄(x). (11)

Moreover, the dual wavelet satisfies an identical relation.

Without loss of generality, we shall henceforth re-
strict our discussion to the wavelet ψα(x) = ψα

0 (x)
associated with the symmetric B-spline βα

0 (x). It is well
known that the B-spline wavelet asymptotically con-
verges1 to a modulated Gaussian [7]; in particular

ψα(x) ∼ ϕα(x) cos(ω0x + ξ0), (12)

as α → +∞, where ϕα(x) denotes a Gaussian window
that is completely characterized by the degree of the B-
spline, whereas, the frequency and phase parameters ω0
and ξ0 are independent of α.

Based on the modulation property (5), one then has
the following asymptotic relation

Hτψα(x) ∼ ϕα(x) cos(ω0x + ξ0 + πτ) (13)

as α → +∞; that is, the fHT acts only on the the phase
of the modulating sinusoid, preserving the Gaussian-
like envelope. It is worth noting that the asymp-
totic form in (13) is in fact the real part of the Ga-
bor function ϕα(x) exp(j(ω0x + ξ0 + πτ)). Figure 1
provides an illustrations of these results. It shows
pairs (Hτψ8(x), Hτ+ 1

2
ψ8(x)) of quadrature B-spline

wavelets, corresponding to the different shifts of the ref-
erence wavelet; the Gaussian-like envelope |Hτψ8(x) +
jHτ+ 1

2
ψ8(x)| is also depicted for each τ.

Now, for the dual-tree analysis involving the B-spline
wavelet and its HT pair, (9) leads to the following ex-
plicit form

f(x) =
∑

|cn|Hτnψα
n(x) =

∑
|cn|ψα

n,−τn
(x), (14)

where ψα
n,−τn

(x) is also a B-spline wavelet, ‘shifted’
from its reference ψα

n(x) by −τn; indeed, in view of the
asymptotic form (13), the action of the fHT translates
into a phase-shift of the modulating sinusoid (for large
orders). In this light, one can then interpret (14) as a
form of multiresolution windowed Fourier-like represen-
tation of the signal f(x).

1The asymptotic equality notation fα(x) ∼ gα(x) signifies that
fα(x)/gα(x) → 1 as α → ∞, for all x.
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(a) τ = −1 (b) τ = − 3
4

(c) τ = − 1
4

(d) τ = 0 (e) τ = 1
3

(f) τ = 1
2

Fig. 1. Quadrature Pairs of B-spline Wavelets; Blue (solid line): Hτψ8(x); Red (broken line): Hτ+ 1
2
ψ8(x); and Black

(solid line): Common localization window given by |Hτψ8(x) + jHτ+ 1
2
ψ8(x)|.

5. CONCLUSION

An amplitude-phase representation of the DT-CWT was
proposed using the fractional Hilbert transform. An ex-
plicit characterization of this was then provided in terms
of the localized B-spline wavelets. These could be of po-
tential interest in signal processing applications involv-
ing the dual-tree transform, particularly signal denois-
ing, where a model linking the reconstructed signal to
the processed complex wavelet coefficients is desirable.
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