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ABSTRACT

Sampling error due to jitter, or noise in the sample times, affects the
precision of analog-to-digital converters in a significant, nonlinear
fashion. In this paper, a polynomial least squares (PLS) estimator
is derived for an observation model incorporating both independent
jitter and additive noise, as an alternative to the linear least squares
(LLS) estimator. After deriving this estimator, its implementation is
discussed, and it is simulated using Matlab. In simulations, the PLS
estimator is shown to improve the mean squared error performance
by up to 30 percent versus the optimal linear estimator.

Index Terms— Sampling, jitter, estimation, polynomial least
squares, analog-to-digital converters

1. INTRODUCTION

Samples generated by an analog-to-digital converter (ADC) are typ-
ically corrupted by errors in both the amplitudes of the samples and
in the sample times. Additive noise has been studied thoroughly in
many situations, and effective algorithms are well-known. However,
jitter differs from additive noise in several respects: the effects are
always signal-dependent and vary over time, and jitter nonlinearly
affects the observations. While these characteristics make jitter more
difficult to mitigate effectively, it can have just as deletrious an ef-
fect on the quality of the samples as additive noise: when quality is
limited by jitter, doubling the standard deviation of the jitter σz re-
duces the effective number of bits (ENOB) by one [1]. Thus, using
the speed-power-accuracy tradeoff in [2], doubling σz , without any
mitigation, increases the power consumption required to achieve the
original accuracy by a factor of four.

Jitter is studied extensively in the literature. The optimal lin-
ear interpolator is developed for signals with independent or corre-
lated jitter in [3]; polynomial interpolators are investigated briefly,
but mixed data terms are not considered. More recently, [4] presents
two block-processing algorithms for reconstructing uniform samples
from jittered observations, whose sample times are distributed on a
dense (discrete) grid. The jitter problem appears similar to the phase-
offset problem encountered in time-interleaved ADCs; see [5]. How-
ever, estimating the offsets between time-interleaved ADC is an eas-
ier problem than the problem addressed in this paper because the
offsets remain fixed over a large number of samples.

Several iterative approaches to jitter mitigation, including a
Gibbs sampler, are explored in [6]. The Gibbs sampler provides
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substantial improvement in jitter tolerance—thus exhibiting the po-
tential for jitter mitigation—but it does so at a high computational
cost. The polynomial least squares (PLS) estimator, also known
as a polynomial minimum mean square error (PMMSE) estima-
tor, developed here attempts to improve upon the basic linear least
squares (LLS) estimator, but with only a minor increase in on-line
computational complexity as compared to LLS.

In Section 2, the observation model for the problem of jitter mit-
igation is provided. Then, the PLS estimator is derived in Section 3,
and one possible implementation of the estimator is presented in Sec-
tion 4. In Section 5, simulation results are summarized demonstrat-
ing the effectiveness of the new estimator. The paper closes with
conclusions drawn from these results and a brief discussion of future
directions for this work.

2. OBSERVATION MODEL

A signal in the span of a finite basis, parameterized by x =
[x0, . . . , xK−1]

T , is oversampled by a factor of M in the presence
of both additive noise wn and jitter zn. The resulting N = KM
observations y = [y0, . . . , yN−1]

T are modeled by the equation

y = H(z)x + w, (1)

where H(z) reflects the choice of finite frame. While many sig-
nal classes and parameterizations could be used, this paper focuses
on x being the Nyquist-rate samples of a periodic bandlimited sig-
nal and y being the time-domain representation with oversampling
factor M . With Nyquist rate normalized to 1 Hz without loss of
generality,

[H(z)]n,k = psincK( n
M

+ zn − k) (2)

where

psincK(t)
Δ
=

sin(πt)

K sin(πt/K)
. (3)

Let the jitter zn be zero-mean, white Gaussian noise with variance
σ2

z , and let the additive noisewn be zero-mean, white Gaussian noise
with variance σ2

w. These variances are relative to the scale of the
model: σz is relative to the critical sampling period, and σw is rela-
tive to the scale of the parameters x. Both noise sources are indepen-
dent of each other and independent of the input signal parameters x.
To complete the Bayesian setup, the prior on the parameters is cho-
sen to minimize prior information, which could bias an algorithm’s
performance. To this end, the Uniform prior, which is the maximum
entropy prior, is favorable because it weighs equally all possible in-
puts over a predetermined range. In addition, it is assumed that each
input parameter is independent of the others for the same reason.
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3. POLYNOMIAL LEAST SQUARES ESTIMATION

The PLS estimator is the member of the class of polynomial
functions in y up to a certain total degree P that minimizes the
mean squared error (MSE) of the estimate x̂. Let y(0:P ) repre-
sent a vector of all monomials of y up to degree P , including
cross-terms. For instance, y(0:2) = [1, y0, . . . , yN−1, y

2
0 , . . . ,

y0yN−1, . . . , yN−2yN−1, y
2
N−1]

T . Then, the PLS estimator is
defined to be

x̂PLS(y) = A
(0:P )

y
(0:P ), (4)

where

A
(0:P ) = arg min

A

E

[
‖Ay

(0:P ) − x‖22

]
. (5)

Solving the optimization problem by taking the derivative with re-
spect toA yields the optimal coefficients

A
(0:P ) = E

[
xy

(0:P )T
] (

E

[
y

(0:P )
y

(0:P )T
])−1

. (6)

The PLS estimator is closely related to the P th-order Volterra filter,
which is discussed extensively in [7], and the problem of finding
the optimal coefficients is almost equivalent to finding the Volterra
kernel coefficients a(n1, . . . , nj) for the filter

xk =
P∑

j=0

N∑
n1,...,nj

a(n1, . . . , nj)ykM−n1
· · · ykM−nj

. (7)

The difference here is that the PLS estimator block-processes the
entire set of observations to determine all the parameters, whereas
the Volterra filter estimates the parameters one-by-one. However,
one could easily adapt the method for computing the coefficients in
A(0:P ) to finding the Volterra kernel coefficients.

For the observation model in (1), the odd moments of xk and
wn are zero:

m(q)
x

Δ
= E [xq

k] =

{
1/(q + 1), q even;
0, q odd.

(8)

m(q)
w

Δ
= E [wq

n] =

{
(1 · 3 · · · · · (q − 1)) σq

w, q even;
0, q odd.

(9)

Since yn = hn(zn)T x + wn is the weighted sum of parameters
xk and additive noise term wn, the expectations E [yp1

n1
· · · ypL

nL
] that

have total degree p1 + · · · + pL odd equal zero. Similarly, those
expectations E [xkyp1

n1
· · · ypL

nL
] with total degree p1 + · · ·+ pL even

also equal zero. Therefore, by splitting y(0:P ) into the terms with
odd and even total degree, it is easy to see that the optimal coeffi-
cients for the even total degree terms must be zero. In addition, the
expectation E[y(0:P )] is zero for the terms with nonzero coefficients.
Thus, E[x̂PLS(y)] = 0 = E [x], so the PLS estimator is unbiased.
(Unbiasedness can also be easily shown using orthogonality, even in
the general case, since the PLS optimization is a result of the Projec-
tion Theorem.)

4. IMPLEMENTATION

Finding the coefficients in (6) involves solving a system of linear
equations, of which the known matrices are hard to compute directly.
Here, expressions for the elements of these matrices are derived.

Consider the expectation E [yp1
n1
· · · ypL

nL
], where p1 + · · · + pL

is even:

E

[
L∏

�=1

(
K−1∑
k=0

hn�
(zn�

)kxk + wn�

)p�
]

=

E

⎡
⎣ L∏

�=1

⎛
⎝ ∑

q0,�+···+qK−1,�+qw,�=p�

(
p�

q0,� · · · qK−1,� qw,�

)

·

(
K−1∏
k=0

(hn�
(zn�

)kxk)qk,�

)
w

qw,�
n�

)]
. (10)

Combining the summations into one large summation for all � =
1, . . . , L, (10) becomes

E

⎡
⎢⎢⎢⎢⎢⎣

∑
q0,�+···+qK−1,�+qw,�=p�,

∀�=1,...,L

L∏
�=1

(
p�

q0,� · · · qK−1,� qw,�

)

·

(
K−1∏
k=0

(hn�
(zn�

)kxk)qk,�

)
w

qw,�
n�

]
. (11)

Distributing the xk out of the innermost product in (11) and collect-
ing terms outside the product over � yields

∑
q0,�+···+qK−1,�+qw,�=p�,

∀�=1,...,L

(
L∏

�=1

(
p�

q0,� · · · qK−1,� qw,�

)

· E

[
K−1∏
k=0

hn�
(zn�

)
qk,�

k

]
m

(qw,�)
w

)(
K−1∏
k=0

m
(qx,k)
x

)
(12)

where qx,k =
∑L

�=1 qk,�, andm
(qx,k)
x andm

(qw,�)
w are defined in (8)

and (9). Using Gauss-Hermite quadrature [8],

E

[
K−1∏
k=0

hn�
(zn�

)
qk,�

k

]
=

I∑
i=1

wi

K−1∏
k=0

hn�
(zi)

qk,�

k . (13)

The computational complexity of the computation in (13) isO(KI).
Thus, the computational complexity for one choice of q0,1,. . .,
qK−1,1,qw,1,. . .,q0,L,. . .,qK−1,L,qw,L is O(KIL). By elementary
combinatorics, for each � = 1, . . . , L, there are

(
p�+K

K

)
ways to

choose q0,�, . . . , qK−1,�, and qw,� such that they sum to p�. An ex-
pectation of the form E [xkyp1

n1
· · · ypL

nL
] is computed in an identical

manner to the above. Clearly, the number of computations required
is prohibitive when P , and thus L and p�, becomes large.

A few tricks can be used to reduce the number of expectations
that need to be evaluated. The most obvious is that the matrix
E

[
y(0:P )y(0:P )T

]
is symmetric, so only half of the matrix needs

to be computed. Since the most highly correlated cross-terms can
be expected to be those adjacent to each other, the number of terms
in y(0:P ) can be reduced to be linear in K and M without sac-
rificing much information. Another way to reduce the number of
computations is to take advantage of the periodicity of the psinc
function:
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Theorem 1 Assume wn and zn are both Lth-order stationary ran-
dom processes. Then, yn is an Lth-order cyclostationary random
process with period M , and for all indexes n1, . . . , nL, powers
p1, . . . , pL, and offsets n = Mk,

E
[
yp1

n1
· · · ypL

nL

]
= E

[
yp1

n1+n · · · y
pL
nL+n

]
. (14)

Proof. Express p(yn1
, . . . , ynL

) in terms of the observation model
likelihood function and priors on x and zn1

, . . . , znL
:

p(yn1
, . . . , ynL

)

=

∫
· · ·

∫
p(yn1

, . . . , ynL
| x, zn1

, . . . , znL
)

p(x)p(zn1
, . . . , znL

) dx dzn1
· · · dznL

. (15)

Consider the observation model in (1). This system is time-invariant
for shifts of multiples ofM . Therefore, for shifts of n = kM ,

p(yn1
, . . . , ynL

)

=

∫
· · ·

∫
p(yn1+n, . . . , ynL+n | x, zn1+n, . . . , znL+n)

p(x)p(zn1+n, . . . , znL+n) dx dzn1+n · · · dznL+n. (16)

As a result, yn is Lth-order stationary for shifts of multiples ofM :

p(yn1
, . . . , ynL

) = p(yn1+kM , . . . , ynL+kM ), ∀k ∈ Z. (17)

Thus, yn can be thought of as the interleaving of M Lth-order sta-
tionary random processes; such a process is called Lth-order cyclo-
stationary with periodM . The equivalence of expectation (14) holds
as a direct result. �

5. SIMULATION RESULTS

To measure the performance of the PLS estimator, the LLS estimator
is used as a baseline:

x̂LLS(y) = E[H(z)]T
(

E[H(z)T
H(z)] +

σ2
w

σ2
x

I

)−1

y. (18)

Using Matlab, both algorithms are implemented and tested for vari-
ous choices of oversampling factorM , jitter variance σ2

z , and addi-
tive noise variance σ2

w. The MSE of the LLS estimator has a closed
form:

E
[
‖x̂LLS(y)− x‖2

]
= σ2

x tr
(
I− E[H(z)T ]

(
E[H(z)T

H(z)]
)−1

E[H(z)]

)
. (19)

Since the PLS estimator can be thought of as an LLS estimator with
an augmented data set, the MSE of the PLS estimator is similar:

E
[
‖x̂PLS(y)− x‖2

]
= tr

(
σ2

xI− E[xy
(0:P )T

]

(
E[y(0:P )

y
(0:P )T

]
)−1

E[y(0:P )
x

T ]

)
. (20)

In Figure 1, the MSE improvements of three flavors of the PLS esti-
mator relative to the LLS estimator are compared for different levels
of oversampling.

As expected, augmenting the data set improves the estimator, so
all of the PLS estimators depicted are better than the optimal linear
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Fig. 1. Three 3rd-order PLS estimators (full, adjacent mixed terms
only, and no mixed terms) are compared against the LLS estimator
forK = 3, σw = 0.01 and different values ofM and σz .

estimator. However, as the graph shows, the greatest improvement
is achieved when the full set of mixed terms are incorporated into
the data set. In addition, the graph suggests that whenM increases,
the full PLS still gives considerable MSE improvement, but the PLS
estimator using no mixed terms, and the PLS estimator using only
adjacent terms, give up most of their performance gains. While for
a standard bandlimited signal, the samples associated with one pa-
rameter are orthogonal to the samples for the other parameters, the
fact that jitter offsets the sample times away from the zero-crossings
of the psinc basis functions increases the correlation among the sam-
ples. This effect is more pronounced for the psinc function because
unlike the regular sinc interpolator, the psinc does not decay.

The contribution of each value of the full augmented data set
y(0:P ) can be compared by measuring the 2-norm of the associated
column vector of coefficients in A(0:P ). The members of the aug-
mented data set are divided into four categories: linear terms yn, cu-
bic terms y3

n, adjacent mixed terms y�ymyn, and other mixed terms
y�ymyn, and the 2-norms of all the associated column vectors for
each category are added together. For several choices of σz andM ,
Table 1 describes the 2-norms for each category as a fraction of the
overall total. Note that in the case when σz � σw, the PLS terms
account for more than half of the total. Also, the contribution of ad-
jacent terms decreases as M increases; this explains the relatively
poorer performance of adjacent terms PLS for M = 4 in Figure 1.
The relative contributions of the mixed terms are shown in Figure 2
for the case of oversampling byM = 4 and σz = 0.1 much greater
than σw = 0.01. As expected, the majority of the contribution is
from those terms with y�, ym, and yn relatively close together.

How does the PLS estimator compare against the hybrid Gibbs
and slice sampler proposed in [6] to approximate the Bayes least
squares (BLS) estimator? In general, the BLS estimator is optimal
in minimizing theMSE; however, the method for computing the BLS
is an approximate one. Hampered by the random nature of the Gibbs
sampler, a large number of iterations may be required to ensure con-
vergence; the resulting run-time of the algorithm is highly undesir-
able for real time applications. In comparison, the PLS estimator
has a relatively low online computational complexity; the majority
of the work is done off-line, before any data is obtained, to generate
the coefficients of the estimator. In Figure 3, the PLS estimator with
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Table 1. Fraction (%) of the contribution to the estimate x̂PLS by
each category of observations in the augmented data y(0:P ), as mea-
sured by the 2-norm of the column vector of coefficients in A(0:P ).
As in Figure 1, these values are for theK = 3 parameter case, with
low additive noise σw = 0.01.

PLS (no PLS PLS
σz M Linear mixed terms) (adjacent) (other)
0.1 2 43.73 10.95 20.22 25.10
0.1 4 37.40 21.14 4.23 37.23
0.02 2 55.06 9.16 11.16 24.62
0.02 4 52.95 15.87 2.91 28.27
0.005 2 91.79 0.42 1.40 6.40
0.005 4 94.42 0.03 0.81 4.73
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Fig. 2. The relative contributions of the mixed terms y�ymyn of the
full 3rd-order PLS estimator are shown according to the displace-
ments m − l and n − m, for K = 3, M = 4, σz = 0.1, and
σw = 0.01. The contribution for n = m = � is omitted for clarity;
this contribution is equal to 0.44.

adjacent mixed terms is compared against the BLS estimator, with
mixed results.

For low levels of oversampling, the BLS estimator is not very ef-
fective for high σz , whereas the PLS estimator provides consistently
reduced MSE over the LLS estimator. However, as the oversampling
level increases, the BLS estimator improves, while the PLS estima-
tor does only marginally better than the LLS estimator. Figure 1 sug-
gests that the full third order PLS estimator may perform better with
higher oversampling, but the number of terms in E[y(0:P )y(0:P )T

]
is on the order of O(M2P ), so for even M = 16, the matrix does
not fit in 1 GB of memory.

6. CONCLUSION

Simulation results demonstrate the usefulness of the PLS estimator
in reducing the MSE in the presence of jitter for low oversampling. It
remains to be seen if higher orders would yield substantial improve-
ments for higher levels of oversampling. Although the on-line com-
putational cost is comparable to that of the LLS estimator, comput-
ing the coefficients off-line is extremely computationally intensive
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Fig. 3. The 3rd-order PLS estimator (adjacent mixed terms only)
is compared against the BLS estimator (Gibbs + slice sampler), us-
ing the LLS estimator as a baseline, for K = 3, σw = 0.01, and
M = 2, 4, 16. The MSE for the LLS and PLS estimators are exact,
while the BLS estimator’s MSE is approximated using Monte Carlo
simulation with 1000 trials.

for low orders, and essentially intractible for higher orders. Further
work remains in simplifying the coefficient computation process for
higher orders. Perhaps, orthogonalization techniques used to sim-
plify computing the coefficients of Volterra filters may be applied
similarly here. However, discounting a faster method for computing
the PLS estimator coefficients, the design procedure for the BLS es-
timators described in [6] is more easily scalable to achieve greater
accuracy.
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