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ABSTRACT

An analysis of quaternion-valued intrinsic mode functions

(IMFs) within three dimensional empirical mode decomposi-

tion is presented. This is achieved by using the delay vec-

tor variance (DVV) method, which examines the signal pre-

dictability in phase space to assess the determinism and non-

linearity within the signal. The study illustrates that the con-

tribution of the first few IMFs contain information related to

the stochastic/nonlinear signal nature, whereas the lower or-

der IMFs are largely deterministic. The analysis is supported

by simulation results on a quaternion signal composed of lin-

ear/nonlinear benchmark signals and on real world wind data.

Index Terms— Quaternion signal processing, Empiri-

cal mode decomposition (EMD), Intrinsic mode functions

(IMFs), Delay vector variance (DVV).

1. INTRODUCTION

The empirical mode decomposition (EMD) algorithm, de-

signed for time frequency analysis of nonlinear and nonsta-

tionary data, decomposes the signal in hand into a number of

oscillatory modes, called intrinsic mode functions (IMFs) [1].

These intrinsic mode functions are ‘well behaved’ in terms

of localized time-frequency representation; so that the sub-

sequent application of Hilbert transform yields meaningful

time-frequency-amplitude spectrum [1].

Recently, extensions of EMD to higher dimensions have

been proposed in order to enable processing of multivariate

(bivariate and pure quaternion) signals directly in the do-

main where they reside. These extensions include complex

EMD [2], rotation-invariant complex EMD [3], and bivariate

EMD [4] for complex/bivarite signals, whereas a three di-

mensional empirical mode decomposition algorithm has been

recently proposed by Rehman and Mandic [5] to process

pure quaternion (trivariate) signals. These extensions are

not trivial, as e.g. finding the extrema of a complex signal

is rather challenging, since C is not an ordered field. The

three dimensional EMD algorithm is generic in a sense that,

for complex (bivariate) signals and the proper choice of axis

of rotation, it is isomorphic to the rotation invariant and bi-

variate EMD algorithms. It yields pure quaternion (real part

is zero) IMFs, which carry physical meaning of rotation in

3D spaces, in the same way the real-valued IMFs, extracted

from standard EMD, represents oscillatory modes within the

signal. However, in order to make full use of three dimen-

sional EMD, several key issues, such as local orthogonality

of the quaternion-valued IMFs are still to be understood. An

insight in to the role of quaternion-valued IMFs is therefore a

prerequisite to applying the algorithm to real world nonlinear

and nonstationary signals.

Signal modality characterisation, that is, the degree of

linearity and nonlinearity, and determinism and stochasticity,

within a signal is of great interest in modern signal process-

ing [6]; for instance, the change in the nature of heart signals

from stochastic to deterministic may indicate health hazard.

Since EMD is being increasingly applied in a variety of appli-

cations where signals are of nonlinear and nonstationary na-

ture [7], it is crucial to establish whether and how the modality

of the original signal is altered by EMD. To this end, Chen et
al. have provided a qualitative assessment of the IMFs of the

standard real valued EMD [8].

In this paper, we set out to investigate some intricate prop-

erties of the quaternion (pure) IMFs, generated by three di-

mensional EMD, to establish whether they preserve the na-

ture of the original signal in phase space. This is important,

for instance, in ‘data fusion via fission’ for the modelling of

the relevance of input variables [9]. The delay vector variance

(DVV) method is used for this purpose, as it is based on the

predictability in phase space, and quantifies the degree of de-

terminism and nonlinearity within the signal [6]. Since three

dimensional EMD caters for both the complex and quaternion

signals, the analysis is valid for both the complex and pure

quaternion signals.

2. THREE DIMENSIONAL EMD

The three dimensional EMD method has been proposed re-

cently to process trivariate (pure quaternion) signals directly

in the quaternion domain [5]. In order to obtain the local

mean, a critical step in the sifting algorithm, the algorithm

employs unit quaternions for rotation in 3D spaces, thus pro-

viding projections of multidimensional signal in several direc-

tions. These projections are then used to calculate the enve-
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Fig. 1. Three Dimensional EMD Method: (a) Choices for

axes of rotation: The axes of rotation can be selected as

unit vectors along x, y, and z axes, or as a 3D unit vector,

u = (i+j+k)√
3

= ı+j+κ√
3

; (b) Local mean calculation for a three

dimensional signal using K=32.

lope curves by interpolating their maxima using component-

wise spline interpolation. These envelopes are then averaged

to obtain the local mean of an input 3D signal.

A major difference between rotations in 3D spaces and

2D planes is the specification of the axis of rotation, which

defines the direction about which a vector is rotated by a given

angle. The rotation axis can be chosen as one of the three unit

vectors, represented by ı, j, and κ in Figure 1(a). If ı is chosen

to be the axis of rotation, and the input signal is represented

by v(t) = a(t)ı+b(t)j+c(t)κ, then in the quaternion domain,

the rotation of v(t) by an angle 2θ is given by

pı
θ = eıθv(t)(eıθ)∗

= aı + (b cos 2θ − c sin 2θ)j +
(c cos 2θ + b sin 2θ)κ (1)

where pı
θ is the projection of v(t) in the direction of θ. Sim-

ilarly, if j and κ are selected as axes of rotations, then the

rotated signals will have a form similar to that of (1). Ob-

serve from (1), that for projections along j and κ, only two of

the three directions are being used to calculate the local mean

of a 3D signal, which results in approximate estimates.

To circumvent this problem, a 3D unit vector u is selected

as an axis of rotation, which has components in all the direc-

tions, that is, u = (ı+j+κ)√
3

. In this case, the projection of a

signal rotated by an angle 2θ about unit vector u along the ı
axis, can be calculated as

pu
θ = �[

euθv(t)(euθ)∗ · ı]
= �[e( ı+j+κ√

3
)θ

v(t)(e(−ı−j−κ√
3

)θ) · ı]
= a cos2 θ +

1
3
(2b + 2c− a) sin2 θ +

1√
3
(c− b) sin 2θ (2)

where “·” denotes the dot product and �(·) extracts the real

component of the projection.

Observe from (2) that the projected signal contains all the

three dimensions of v(t), and therefore an accurate estimate

of the local mean is obtained. In order to calculate the en-

velopes in multiple directions, angle θ can be selected to have

K values between 0 to π, that is, θk = (kπ)/K, where 1 ≤
k ≤ K. Notice the upper bound of π, since unit quaternions

provide rotation by an angle 2θ. If we choose K = 6, and use

u = (ı+j+κ)√
3

as an axis of rotation, then from (2), the extrema

along all the three components of the signal are employed to

obtain the projections. Figure 1(b) illustrates the performance

of the proposed method for the calculation of a local mean of

a quaternion signal, using K = 32.

Let v(t) be a trivariate signal represented by a pure quater-

nion. For an initial value of k = 1, the 3D extension of EMD

can be summarized as

1. Calculate the projection of v(t), pu
θk

, in the direction

θk, along an axis of rotation u, using (2);

2. Find the time instants {tuk} corresponding to the max-

ima of pu
θk

(t);

3. Interpolate [tuk , v(tuk )] to obtain envelope curves eu
θk

;

4. If k < K, then set k = k + 1 and go to step 1, else

continue;

5. Compute the mean m(t) of all envelope curves {eu
θk
}K

k=1;

6. Extract the “detail” d(t) using d(t) = v(t)−m(t).

If the “detail” d(t) fulfills the stoppage criteria of IMF,

then it is selected as an IMF and the above procedure is ap-

plied to v(t) − d(t), otherwise it is applied to d(t). This

process is continued until all the rotational modes within the

signal are obtained.

3. DELAY VECTOR VARIANCE (DVV)

The Delay vector variance (DVV) method [6] uses pre-

dictability of the signal in phase space to examine the de-

terminism and nonlinearity within a signal. If m represents

an optimal embedding parameter, then DVV method can be

summarized as follows:

1. The mean, μd, and standard deviation, σd, are com-

puted over all pairwise euclidean distances between de-

lay vectors (DVs), ‖x(i)− x(j)‖ (i �= j);

2. The sets of ’neighbouring’ delay vectors Ωk(rd) are

generated, such that, Ωk(rd) = {x(i)|‖x(k)−x(i)‖ ≤
rd}, that is, sets which consists of all DVs that lie closer

to x(k) than a certain distance rd, taken from the inter-

val [max{0, μd − ndσd}; μd + ndσd], where nd is a

parameter controlling the span over which to perform

the DVV analysis for Ntv uniformly spaced distances;
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3. For every set Ωk(rd), the variance of the corresponding

targets, σ2
k(rd) is computed. The average over all sets

Ωk(rd) normalised by the variance of the time series,

σ2
x, yields the target variance σ∗2(rd),

σ∗2(rd) =

1
N

N∑
k=1

σ2
k(rd)

σ2
x

(3)

Variance measurements from (3) are considered valid

only if the corresponding set Ωk(rd) contains atleast

No = 30 DVs, to avoid unreliable estimates of vari-

ance.

The target variance is plotted as a function of standard-

ised distance ( rd−μd

σd
) to get DVV plots in which the presence

of strong deterministic component yields small target vari-

ances σ∗2(rd) for small spans rd. To check for the nonlin-

earity within a signal, averaged DVV plots over a number of

surrogate signals (generated using the hypothesis of linear-

ity) can be generated and conveniently combined in a scatter

diagram, where the horizontal axis corresponds to the target

variance of the original time series and the vertical to that of

the surrogate time series.

4. HOW INFORMATIVE ARE QUATERNION IMF′S

To provide qualitative assessment of the quaternion-valued

IMFs generated from three dimensional EMD, following

on [8], we shall employ the DVV method. The DVV scatter

plots are generated for two cases: the sum of first and second

quaternion IMFs, and the sum of all the remaining IMFs. The

root mean squared (rms) value is calculated over the differ-

ence between the local variance of the original signal and

that of individual IMFs. This metric is then used to quantify

the degree of similarity between the DVV scatter plots of the

original signal and that of the IMFs, and is given by

ε =
√

1
M

∑
valid rd

(σ∗2
ori(rd)− σ∗2

imf (rd))2, (4)

where σ∗2
ori(rd) denotes target variance, at span rd, for the

original signal, whereas σ∗2
imf (rd) denotes the variance value

for an individual IMF, and M is the number of valid variance

(rd) values. The greater the value of the above metric for any

two given signals, the greater the difference in their funda-

mental properties in phase space.

To perform both the qualitative and quantitative analysis

of IMFs, for illustration, we generated a pure quaternion sig-

nal, consisting of three signals of different nature, that is

Q = 0 + Xı + Y j + Zκ (5)
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Fig. 2. Component-wise DVV scatter plots for pure quater-

nion signal Q(t) (a) Henon map X(t); (b) real world wind

signal Y (t); (c) linear AR(2) signal Z(t).

Signal X(t) was a realization of Henon map, a chaotic non-

linear signal, given by

xn = 1− ax2
n−β + yn−β

yn = bxn−β (6)

where β was set to unity, and parameters a and b were respec-

tively set to 1.4 and 0.3. The x-component of the Henon map

was used in simulations.

Signal Y (t) was chosen as a vertical speed component of

the real world wind signal, while Z(t) was a benchmark linear

AR(2) signal, given by

z(k) = 0.8z(k − 1) + 0.1z(k − 2) + r(k) (7)

where r(k) is white Gaussian noise signal of zero mean and

unit variance.

Figure 2 shows the DVV scatter plots of the three compo-

nents of Q(t). Observe that for Henon map X(t), the scatter

plot deviates away from the bisector line, indicating its non-

linear behaviour. For the linear AR(2) signal Z(t), the plot

coincides with the bisector line, indicating its linear nature,

whereas Y (t) was either nonlinear or/and nonstationary.

In the modality analysis of quaternion IMFs, the three di-

mensional EMD algorithm was used to process the quater-

nion signal (5); the DVV method was then applied to all the

three components of resulting quaternion IMFs, and the cor-

responding scatter plots were analysed. The metric in (4) was

used to quantify the degree of similarity between the scatter

plots of IMFs and those of the original signal shown in Figure

2. Figure 3 shows the DVV scatter plots of the components

of the sum of 1st and 2nd IMFs of a quaternion signal Q(t)
(Figure 3(a), 3(b), and 3(c)), and scatter plots of the remaining
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Fig. 3. DVV scatter plots and the corresponding values of

similarity measure (4) for the three components of (a,b, and

c) the sum of the 1st and 2nd IMFs generated from three di-

mensional EMD algorithm; (d,e, and f) the sum of remaining

(all except IMF1 and IMF2) IMFs.

IMFs (Figure 3(d), 3(e), and 3(f)), together with their corre-

sponding values of similarity metric. Notice that the sum of

first two IMFs preserve the original nature for all three com-

ponents of the input signal Q(t), which is also manifested by

the corresponding low values of similarity metric; while the

sum of the rest of the IMFs have relatively large values of the

similarity metric, showing that that the original signal modal-

ity is not contained in lower IMFs. In order to further explore

the contribution of individual IMFs, the DVV scatter plots of

the X-component of Q(t) for the first four IMFs are sepa-

rately plotted in Figure 4. Again, the values of similarity met-

ric show that the first two IMFs preserve the signal modality,

while the remaining IMFs are largely linear and predictable

(deterministic).

5. CONCLUSIONS

We have presented a method for the modality analysis of
quaternion IMFs generated from the three dimensional EMD
algorithm. The Delay vector variance (DVV) method has
been used to characterize the nature of a signal (“qualitative
analysis”), whereby analysis of the IMFs corresponding to
the original signal are characterised using a proposed simi-
larity metric. The analysis has shown that the sum of first
two IMFs is sufficient to preserve the signal modality for
both the benchmark linear and nonlinear signals, and the real
world wind data, whereas the sum of remaining IMFs exhibit
largely linear and deterministic behaviour. This study will
pave the way for applications of the three dimensional EMD
method in conjunction with multivariate adaptive filtering
algorithms and in data fusion.
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Fig. 4. DVV scatter plots of 1st IMF (a); 2nd IMF (b); 3rd

IMF (c); and 4th IMF (d) of Y (t), generated by three dimen-

sional EMD.
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