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ABSTRACT The assumption of independence among the brain sources is,
however, only made as an analytical expedient. Ultimatelywould
We propose a model for the density of cross-spectral coeffisius-  |ike to model any residual dependence that might remairr it
sity generalizes the corresponding marginal density oxb®plex  the primary object of inquiry. A type of signal dependenceaitral
Likelihood estimate of parameters in the distribution isvi, and s conerence.
examples are given from alpha brain wave sources in sepidE&& Components 6, 12, and 22 each show significant alpha activity
data. at similar times. The scalp maps each project widely, toelgrdis-
Index Terms— cross-spectrum, coherence, phase, estimation tinct regions. A basic question is whether or not the alphvigc
separated by ICA is in indeed independent, or whether ieemts
aspects of a single underlying dynamic alpha phenomenaiving
1. INTRODUCTION all of these components, which is responsible for all of fpéa. In
the latter case, the alpha signals in the (supposedly) s&uhcom-
We consider the distribution of the cross-periodogram neefias the ponents should be phase coherent (as well as amplitudeerdjer
conjugate product of the complex short time Fourier tramsfooef-  i.e. the periodic activity washing over them should have mstant
ficients at a given frequency. Cross-spectral coefficiergsypically  phase delay.
averaged to form estimates of the coherence and phase lagdret
two random processes at a given frequency. To use theseagssimn
analysis or decision making, we would like to have exact deat

approximate forms of the probability density of the estiesat Given two real-valued, zero-mean, discrete time statiprandom

. Estimation .of coherenpe betlween signal§ is.important .i.nyman processesX (t) and X»(t), the cross-spectrurfi(w) is defined
s!gnal processing areas, including comml_mlcatlons a_nld)_g’pccal by Sia(w) 2 = 3% Ria(r)exp(—jwr), where we denote
signal processing. We propose a derivation of the disiobubf . ; Im LT=—00 .
cross-spectral coefficients based on the spectral repiasigerof sta- € imaginary number by = +/—1, E{-} denotes expectation, and
tionary processes. This derivation leads to the consiideraf Nor-

Ri2(1) = E{z:1(t + 7)x2(t)} is the cross-covariance. Using the
mal Variance Mean Mixtures, which are skewed forms of Gamssi SPectral representation, the stationary time-seXigg) can be rep-
Scale Mixtures. resented as a sum of complex exponentials,

To fix ideas and describe the practical context that motvate g
the present work, consider the application of electroenakegram Xi(t) = / exp(ywt) dZ;(w)
(EEG) analysis [1]. In the EEG setup, an array of electrodes o o
the scalp records the superposition of ambient electroetagfield  where Z;(w) is an orthogonal increment process. The cross spec-
generating sources. The technique of Independent CompAneai trum can also be written,
ysis (ICA) [1] has been applied successfully to such recmyslito
separate them into brain components of interest, and eifand Si2(w) = E{dZ:(w)dZ5(w)}

mterfgrlng signals not of interest. . ... Ifwe interpret the incrementZ; (w) as the coefficient ofxp(ywt)
Figure 1 ShOWS.EE.G data_after it has beer_l separated |r_1to 'nd?ﬁ the X;(¢), thenS12(w) may be interpreted as the average value

pendent source activations using ICA, along with the cpwading of the product of these coefficients efp(jwt) in the processex’;

scalp maps defining the projection of the source activityéoscalp. and X [2, p. 659]. LettingdZ:(w) = |dZ:(w)| exp(1di(w)), we

A prominent rhythm in the recording is the alpha, or 10 Hzthhy, (g that ' '

and this rhythm is also present in several of the separateghaco '

nents. ICA separates out the alpha activity into a small rermolf Si2(w) = E{|dZ1(w)||dZ2(w)|exp(3(¢p1(w) — p2(w)))}

components with spatially distinct scalp maps. These coreipts

however have residual dependence that cannot be elimibgtad ~ Thus the magnitude of the cross-spectrum is approximalelat-
instantaneous linear unmixing. erage of the product of the magnitudes of the spectr& pfand

X at the frequencw, while the phase of the cross-spectrum is ap-

This research was partially supported by NSF grants IS$8@ and  Proximately the averagdifference in the phases of; and X, at
CCF-0830612. frequencyw [2, pp. 660-661].

2. COMPLEX CROSS SPECTRA
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(a) Separated EEG activations
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(b) EEG component maps  (c) Alpha components 6, 12, 22
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Fig. 2. Complex cross-periodogram of components 6 and 12, at
10Hz (sampling rate 256Hz). 3000 samples using non-ovgrigp
blocks of 750 ms (192 samples). (a) Scatter plot of complesssr
periodogram values. (b) Contour plot of smoothed 2D histogr

(c) Log histogram of the real part. (d) Log histogram of inregiy
part. Note the log convexity of the tails.

the two processeX (t) and X, (t) as follows. Suppose we have

Fig. 1. Separated EEG components. (a) Activation time seriespof tosegments, or blocks, of each process. We model the realizati
variance components in EEG unmixed using ICA. (b) Componenthe kth segment by,

maps corresponding to the activations in (a). (c) Componeays
corresponding to the alpha activations in components 6ai@,22
respectively.

Xi(t) = &A1 cos(wt+0) + vi(t)
Xo(t) = &7 Aszcos(wt+ 0k + @)+ va(t)

The spectral representation and the convenience of the RFT mWherew: (t) and vz (t) are independent stationary noise processes

tivate the following estimate for the cross-spectrum. Defire finite
Fourier transform of th&-sample segment of procesby,

dx(w) 2 % S X () exp(—gwt)

but we shall suppress this here for simplicity of expositamce the
results are largely independent of the taper. The peri@ogor
process is defined by [3, p. 120],

Ii(w) 2 (27T)71|dX7;(W)|2

The periodogram is used as a statistic for the estimatiomegpower
spectral density. Similarly, the cross-periodogram, @efifor pro-
cessesX; and X by,

La(w) £ (21) (W) d3(w)

is used as a statistic for the estimation of the cross-g@ctr

The form of the distribution is motivated by the followingrsi
plified model. We shall be interested primarily in estimgtitne
cross-spectra between two series whose individual spetsresi-
ties are sharply peaked about a particular frequency. Wertiadel

with spectraN:(w) and Nz(w) respectively. The random non-

negative amplitude coefficierl, reflects a common power source
modulating the processek; and X», scaled respectively by the
positive amplitudesi; and A2, which are taken to be constant. The
segments are taken to be chosen such that the ghaseiniformly
random over(—m, ), with the phase lag betweek; and X, at

A window or taper is commonly used as a convergence factor [3]Tduencyw given by¢, which is taken to be constant. _

We now consider the distribution of the cross-periodogram

statistic for X, (¢) and X2 (t). The Fourier coefficientsix, (w) are

given by,

dx, (w)

Similarly,

dx, (w) =

% Z X1(t) exp(—jwt)

%\/TAl exp(70x) fiﬂ + du, (w)

VT Az exp(30) exp(79) €)% + duy ()

The cross-periodogram statistic is thus given by,

2 L12(w) = 1 A Az exp(—9¢) T€ + Vi (T€:)7> + Wi (1)



where, 3.2. Distribution of cross spectra

Yi = LA, exp(30s) d5 (w) + 2 Ao exp(—601) exp(—16)do, (w If x is complex Normal, then the distribution »f,” | x;x;" is com-
b= 2Arexp(yi) di, (W) + 3 42 exp(=0) exp( =g 9)dus () plex Wishart [3, 6]. The distribution is defined over the seHer-

and, mitian, positive semi-definit8 ¢ C™*",
Wi = du,(w) dy, (w)

Y} is the sum of independent complex Normal random variabtes, a

is thus complex Normal (and circular), is a complex Gaussian whereN > n, andC(n, N) = z"("~D/2 T[N (N —i+1). The
scale mixture, which is also circular. We assume that theenpio-  distribution of the cross-periodogram for complex Nornsidom
cesses have relatively small variance so that the disioibwif 17, variables whenV > n may be obtained by calculating the marginal
is concentrated around zero and does not significantly infei¢he  distribution of an off-diagonal element of the complex Widhden-
form of the distribution off;12(w). From (1), we see that the joint sity. But the distribution of the cross-periodogram valtiesm-
distribution of the real and imaginary parts Bf (w) has the form  selves (without summing over multiple blocks) has = 1, and

p(S;E) = C(n, N) " Z]7V|S|V ™ exp (— trace(Z™'S))

of a Normal Variance Mean Mixture [4], thus even for the minimal dimension of 2 which is necessaryafo
2 cross-periodogram, this form of complex Wishart distribatfails
x=&""z+£B (2)  todescribe the distribution of the raw cross-periodograinas. We

] o ) ~ may also determine the raw cross-periodogram distributicectly,
convolved with the distribution ofi’;.. The non-negative scale mix- 55 follows.

ing random variable i§°¢, and the drift (or skew, or bias) vector

B = 1A1Asexp(—9). Proposition 1. Let 1 and x> be complex Normal distributed ran-
dom variables with complex covariance X. Then the random vari-
able s = z1x3 isa complex Normal Variance Mean Mixture with 2

3. COMPLEX GAUSSIAN SCALE MIXTURES AND distributed mixing density.

NORMAL VARIANCE MEAN MIXTURES
Proof. Define the Cholesky factorizatioB = T7T, where
Real valued scalar Gaussian scale mixtures (GSMs) [4, & te
formp(z) = [;°N(2;0,€) dF (£), whereN (z ; 1, o*) denotes the T {Tn T12:|
Gaussian density with meanand variances>. A GSM distributed L0 T
random variablez, can be represented as a product= £72z,
wherep(z|€) = N(0,&). Vector GSMs, e.gx = ¢Y?z, where  With 711,722 > 0. Thenx = [z122]" can be represented as
z ~ N(0,%), produce ellipsoidally symmetric densities. x = Tz, wherez = [z1 z2]" with z, andz; complex Normal and
Perhaps the most familiar GSM is Studentdistribution for the ~ independent. Then we have,

mean of a Gaussian sample scaled by square root of its saaple v

T

* _ *
ance. Since the sample mean and variance are independettihean nwz = (Tuzm + T22Z2)T22Z22
sample mean is Gaussian, the normalized sample mean is si@aus = Tuzz +Ti2Toz|2|

) SO e e . B )
scale mixture, with mixing density distributed as invexge = |z|Tie 962, 4 |22 T12Ton

Normal Variance Mean Mixtures (NVMMSs) are a generalization
of GSMs, and can be represented in the faxms £1/?z +¢3. The  Thusziz is distributed as a Normal Variance Mean mixture dis-
resulting density is non-ellipsoidally symmetric (nomecilar), and  tribution with mixing variable¢ = |2|?, which has ay? distribu-

skewed in the direction o8, in a cone like shape. Note that the tion. O
particular combination of exponengd/? and¢ is required for the ) ) )
analytical tractability. The resulting Gaussian scale mixture has a Mackay’s Bégsel

distribution [4]. Note that Mackay’s BessAl distribution has expo-
nential, log concave tails. Student'distribution, which has mixing
densityinverse gamma distributed, does not admit skew because it
Fourier coefficients of a stationary time series are comptgwed ~ has asymptotically algebraic tails, while skewed NVMMs uieg
random variables, possessing a (circutamplex Normal distribu- ~ €xponential tails [4].

tion [3,6, 7], denotedx ~ N¢(c, X). The (real domain) joint prob-

ability density over the real and imaginary partg,z,x;) can be  3.3. Generalized Inverse Gaussian and Generalized Hyperbo

i i it a
written in terms of complex quantitiggx) = p(xr, x1) as, The Generalized Inverse Gaussian (GIG) density [4, 8, 9] lman
thought of as a combination and generalization of the gammda a
inverse gamma distributions. The GIG density has the form,

3.1. Complex Fourier coefficients of stationary time series

p(x;¢,8) =7 "(det ) exp (—(x— )2 (x— c))

In particular, the univariate complex normal distributisrgiven by ; o (K/8) 1 P

) 1 ) ) 5 N (f,)\,(g , K ):2}{7(6)5 exp(—%((;f +K g)) (3)

Ne(zip,0%) =m0~ exp(—o |z — pul%) Aom

. for £ > 0, whereK, is the BesseK function, or modified Bessel
2 2 ’ ’
wherezr andz; are independen/(uur, 0°/2) and N (ur,0°/2)  fynction of the second kind. The moments of the Generalized |
respectively. As in the real valued case, scale mixturenfiiex o5 Gaussian are easily found by direct integration gutsie fact
Normals and complex NVMMs may also be constructed. The Bcalathat (3) integrates to one
multiplier is real valued, and multiplies a complex randoettor. '

NVMMs are also extendable to complex random vectors with-com

- 3\ Kxir(6k)
plex drift. E{¢} = (;) % (4)



The parameters, §, andx are redundant given the scale. As we wil
estimate the scale of the complex normal and the norm of tifte di
vector directly, we will eliminate this redundancy by segtic = 1
in the mixing density.

The generalized hyperbolic distribution [4], in dimensidnis
the Normal Variance Mean Mixture with GIG mixing density. We
write the generalized hyperbolic density in the form,

1 1

GH(x;%,8,6,\) = ST PR 5
3\ o
(H(B)) Kx—a/2(8(x)x(B)) exp(8" X7 'x)

whered(x) £ /62 + ||x[|2_, andx(B8) = /1 + (1812,

4. MAXIMUM LIKELIHOOD BY EM

Given the mixing random variabke a NVMM is Normal,

p(x; %, B) = /O "N (x5 €8, €5)p(e) de 5)

Writing out the “complete likelihood” of¢, x), we get,
p(E,x; T, 8,6,2) = (2m) 28|72 p(€; A, 6)
X exp (-% xS %+ BTN x - %55T2’1B> )
It can be seen that the posterior density¢dfiven x is also GIG.
Taking the logarithm, we see that we require two posteriamerats,

E{¢|x} and E{¢*|x}. which are found using (4) to be,

5(x) )r Kx_a/24-(0(x)k(B))
k(8) KAfd/Q(d(X)H(B))

BIE |5, 8,60} — (

log likelinood = -0.37487

log density

0 o 0 4@ 60 8
iteration
log likelinood = -0.33553
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Fig. 3. Fits using the EM algorithm. Top row: one modgal= 0.
Bottom row: two models\; = 0, Ao = 1. Thed parameters were
optimized with thes and 3 parameters. Last panel demonstrates
monotonicity of the closed form algorithm.

5. DISCUSSION AND CONCLUSION

The probabilistic EM framework allows straightforward emsion to

a mixture of complex NVMM densities. In Figure 3, we see in the
top row that while the Maximum Likelihood fit of a single geakr
ized hyperbolic is log convex and more likely than the singfishart
model, it nevertheless poorly captures the coherenceTai bot-
tom row of Figure 3 shows that the ML estimate of a mixture dens
ties, a non-coherent (circular) complex GSM and a coherdMM
(non-circular) density, yields a good fit. This is not susprg since
examination of the data shows that the signals are not asol
at alpha continuously, but only over certain periods. Thgtune
model then gives an estimate of the relative proportiondefdo-
herent and non-coherent periods, as well as a simple Bayestac-
tion for the (blindly learned) coherence model vs. the noherent

In the case of the complex cross-spectra, the complex randofodel. The EM algorithm provides monotonic convergencé wit
variable can be seen as a two dimensional random vectorigenta closed form updates.

ing the real and imaginary parts. In this case the varianjestsa

scalar,y) = o2, giving the cross-spectral amplitude correlation. Let

x be the vector of real and imaginary parts of the cross-pegmm
statistic, so that the cross-periodogram iRif.

The maximization steps can be computed in closed form. De-

fine gt £ E{€|Xt; 27 B7 )‘7 6} andfyt £ E{£71|Xt; 27 ﬂv )‘7 5}’ in
dimensiond = 2, and define the quantities,

a= %zi\le%v b= %Ziv:lft
Also letc = % Zf’:l x:. Then the updates are given by,

c/b
o' = ja-c"B+50|8)°

@)
®)

This algorithm monotonically increases the likelihoodhwito step
size parameters.

We may also fit the parametérby gradient ascent on the com-
plete log likelihood as follows,

Kai(8) 2

—ad
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