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ABSTRACT

We propose a model for the density of cross-spectral coefficients us-
ing Normal Variance Mean Mixtures. We show that this model den-
sity generalizes the corresponding marginal density of theComplex
Wishart distribution for the cross-spectral density. The Maximum
Likelihood estimate of parameters in the distribution is derived, and
examples are given from alpha brain wave sources in separated EEG
data.

Index Terms— cross-spectrum, coherence, phase, estimation

1. INTRODUCTION

We consider the distribution of the cross-periodogram, defined as the
conjugate product of the complex short time Fourier transform coef-
ficients at a given frequency. Cross-spectral coefficients are typically
averaged to form estimates of the coherence and phase lag between
two random processes at a given frequency. To use these estimates in
analysis or decision making, we would like to have exact or atleast
approximate forms of the probability density of the estimates.

Estimation of coherence between signals is important in many
signal processing areas, including communications and biological
signal processing. We propose a derivation of the distribution of
cross-spectral coefficients based on the spectral representation of sta-
tionary processes. This derivation leads to the consideration of Nor-
mal Variance Mean Mixtures, which are skewed forms of Gaussian
Scale Mixtures.

To fix ideas and describe the practical context that motivates
the present work, consider the application of electroencephalogram
(EEG) analysis [1]. In the EEG setup, an array of electrodes on
the scalp records the superposition of ambient electromagnetic field
generating sources. The technique of Independent Component Anal-
ysis (ICA) [1] has been applied successfully to such recordings to
separate them into brain components of interest, and artifacts and
interfering signals not of interest.

Figure 1 shows EEG data after it has been separated into inde-
pendent source activations using ICA, along with the corresponding
scalp maps defining the projection of the source activity to the scalp.
A prominent rhythm in the recording is the alpha, or 10 Hz, rhythm,
and this rhythm is also present in several of the separated compo-
nents. ICA separates out the alpha activity into a small number of
components with spatially distinct scalp maps. These components
however have residual dependence that cannot be eliminatedby an
instantaneous linear unmixing.

This research was partially supported by NSF grants ISS-0613595 and
CCF-0830612.

The assumption of independence among the brain sources is,
however, only made as an analytical expedient. Ultimately we would
like to model any residual dependence that might remain after the
attempted separation, and indeed such residual dependenceis often
the primary object of inquiry. A type of signal dependence ofcentral
importance in the analysis of EEG and MEG signals in neuroscience
is coherence.

Components 6, 12, and 22 each show significant alpha activity
at similar times. The scalp maps each project widely, to largely dis-
tinct regions. A basic question is whether or not the alpha activity
separated by ICA is in indeed independent, or whether it represents
aspects of a single underlying dynamic alpha phenomenon involving
all of these components, which is responsible for all of the alpha. In
the latter case, the alpha signals in the (supposedly) separated com-
ponents should be phase coherent (as well as amplitude coherent),
i.e. the periodic activity washing over them should have a constant
phase delay.

2. COMPLEX CROSS SPECTRA

Given two real-valued, zero-mean, discrete time stationary random
processes,X1(t) andX2(t), the cross-spectrumS12(ω) is defined
by S12(ω) , 1

2π

∑∞

τ=−∞
R12(τ ) exp(−ωτ ), where we denote

the imaginary number by ,
√−1, E{·} denotes expectation, and

R12(τ ) = E{x1(t + τ )x2(t)} is the cross-covariance. Using the
spectral representation, the stationary time-seriesXi(t) can be rep-
resented as a sum of complex exponentials,

Xi(t) =

∫ π

−π

exp(ωt) dZi(ω)

whereZi(ω) is an orthogonal increment process. The cross spec-
trum can also be written,

S12(ω) = E{dZ1(ω)dZ∗
2 (ω)}

If we interpret the incrementdZi(ω) as the coefficient ofexp(ωt)
in the Xi(t), thenS12(ω) may be interpreted as the average value
of the product of these coefficients ofexp(ωt) in the processesX1

andX2 [2, p. 659]. LettingdZi(ω) = |dZi(ω)| exp(φi(ω)), we
see that,

S12(ω) = E
{

|dZ1(ω)||dZ2(ω)| exp((φ1(ω) − φ2(ω)))
}

Thus the magnitude of the cross-spectrum is approximately the av-
erage of the product of the magnitudes of the spectra ofX1 and
X2 at the frequencyω, while the phase of the cross-spectrum is ap-
proximately the averagedifference in the phases ofX1 andX2 at
frequencyω [2, pp. 660-661].
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(a) Separated EEG activations

(b) EEG component maps

1 2 3

(c) Alpha components 6, 12, 22

Fig. 1. Separated EEG components. (a) Activation time series of top
variance components in EEG unmixed using ICA. (b) Component
maps corresponding to the activations in (a). (c) Componentmaps
corresponding to the alpha activations in components 6, 12,and 22
respectively.

The spectral representation and the convenience of the FFT mo-
tivate the following estimate for the cross-spectrum. Define the finite
Fourier transform of theT -sample segment of processi by,

dXi
(ω) ,

1√
T

T
∑

t=1

Xi(t) exp(−ωt)

A window or taper is commonly used as a convergence factor [3],
but we shall suppress this here for simplicity of expositionsince the
results are largely independent of the taper. The periodogram for
processi is defined by [3, p. 120],

Iii(ω) , (2π)−1|dXi
(ω)|2

The periodogram is used as a statistic for the estimation of the power
spectral density. Similarly, the cross-periodogram, defined for pro-
cessesX1 andX2 by,

I12(ω) , (2π)−1dX1
(ω)d∗

X2
(ω)

is used as a statistic for the estimation of the cross-spectrum.
The form of the distribution is motivated by the following sim-

plified model. We shall be interested primarily in estimating the
cross-spectra between two series whose individual spectral densi-
ties are sharply peaked about a particular frequency. We thus model
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Fig. 2. Complex cross-periodogram of components 6 and 12, at
10Hz (sampling rate 256Hz). 3000 samples using non-overlapping
blocks of 750 ms (192 samples). (a) Scatter plot of complex cross-
periodogram values. (b) Contour plot of smoothed 2D histogram.
(c) Log histogram of the real part. (d) Log histogram of imaginary
part. Note the log convexity of the tails.

the two processesX1(t) andX2(t) as follows. Suppose we haveB
segments, or blocks, of each process. We model the realization in
thekth segment by,

X1(t) = ξ
1/2
k A1 cos(ωt + θk) + ν1(t)

X2(t) = ξ
1/2
k A2 cos(ωt + θk + φ) + ν2(t)

whereν1(t) and ν2(t) are independent stationary noise processes
with spectraN1(ω) and N2(ω) respectively. The random non-
negative amplitude coefficientξk reflects a common power source
modulating the processesX1 and X2, scaled respectively by the
positive amplitudesA1 andA2, which are taken to be constant. The
segments are taken to be chosen such that the phaseθk is uniformly
random over(−π, π), with the phase lag betweenX1 and X2 at
frequencyω given byφ, which is taken to be constant.

We now consider the distribution of the cross-periodogram
statistic forX1(t) andX2(t). The Fourier coefficients,dXi

(ω) are
given by,

dX1
(ω) =

1√
T

T
∑

t=1

X1(t) exp(−ωt)

= 1
2

√
TA1 exp(θk) ξ

1/2
k + dν1

(ω)

Similarly,

dX2
(ω) = 1

2

√
TA2 exp(θk) exp(φ) ξ

1/2
k + dν2

(ω)

The cross-periodogram statistic is thus given by,

2π I12(ω) = 1
4

A1A2 exp(−φ)Tξk + Yk (Tξk)1/2 + Wk (1)



where,

Yk = 1
2
A1 exp(θk) d∗

ν2
(ω) + 1

2
A2 exp(−θk) exp(−φ)dν1

(ω)

and,
Wk = dν1

(ω) d∗
ν2

(ω)

Yk is the sum of independent complex Normal random variables, and
is thus complex Normal (and circular).Wk is a complex Gaussian
scale mixture, which is also circular. We assume that the noise pro-
cesses have relatively small variance so that the distribution of Wk

is concentrated around zero and does not significantly influence the
form of the distribution ofI12(ω). From (1), we see that the joint
distribution of the real and imaginary parts ofI12(ω) has the form
of a Normal Variance Mean Mixture [4],

x = ξ1/2
z + ξβ (2)

convolved with the distribution ofWk. The non-negative scale mix-
ing random variable isTξ, and the drift (or skew, or bias) vector
β = 1

4
A1A2 exp(−φ).

3. COMPLEX GAUSSIAN SCALE MIXTURES AND
NORMAL VARIANCE MEAN MIXTURES

Real valued scalar Gaussian scale mixtures (GSMs) [4, 5] have the
form p(x) =

∫ ∞

0
N (x; 0, ξ) dF (ξ), whereN (x ; µ, σ2) denotes the

Gaussian density with meanµ and varianceσ2. A GSM distributed
random variable,x, can be represented as a productx = ξ1/2z,
wherep(x|ξ) = N (0, ξ). Vector GSMs, e.g.x = ξ1/2

z, where
z ∼ N (0, Σ), produce ellipsoidally symmetric densities.

Perhaps the most familiar GSM is Student’st distribution for the
mean of a Gaussian sample scaled by square root of its sample vari-
ance. Since the sample mean and variance are independent, and the
sample mean is Gaussian, the normalized sample mean is a Gaussian
scale mixture, with mixing density distributed as inverseχ2.

Normal Variance Mean Mixtures (NVMMs) are a generalization
of GSMs, and can be represented in the form,x = ξ1/2

z+ ξβ. The
resulting density is non-ellipsoidally symmetric (non-circular), and
skewed in the direction ofβ, in a cone like shape. Note that the
particular combination of exponentsξ1/2 andξ is required for the
analytical tractability.

3.1. Complex Fourier coefficients of stationary time series

Fourier coefficients of a stationary time series are complexvalued
random variables, possessing a (circular)complex Normal distribu-
tion [3,6,7], denoted,x ∼ NC(c, Σ). The (real domain) joint prob-
ability density over the real and imaginary parts,(xR, xI) can be
written in terms of complex quantitiesp(x) , p(xR,xI) as,

p(x;c,Σ) = π−n(detΣ)−1 exp
(

− (x − c)H
Σ

−1(x − c)
)

In particular, the univariate complex normal distributionis given by

NC(x;µ, σ2) = π−1σ−2 exp(−σ−2|x − µ |2)

wherexR andxI are independentN (µR, σ2/2) andN (µI , σ
2/2)

respectively. As in the real valued case, scale mixtures of complex
Normals and complex NVMMs may also be constructed. The scalar
multiplier is real valued, and multiplies a complex random vector.
NVMMs are also extendable to complex random vectors with com-
plex drift.

3.2. Distribution of cross spectra

If x is complex Normal, then the distribution of
∑N

t=1 xtx
H
t is com-

plex Wishart [3, 6]. The distribution is defined over the set of Her-
mitian, positive semi-definiteS ∈ C

n×n,

p(S;Σ) = C(n, N)−1|Σ|−N |S|N−n exp
(

− trace(Σ−1
S)

)

whereN ≥ n, andC(n, N) = πn(n−1)/2 ∏N
i=1 Γ(N − i+1). The

distribution of the cross-periodogram for complex Normal random
variables whenN ≥ n may be obtained by calculating the marginal
distribution of an off-diagonal element of the complex Wishart den-
sity. But the distribution of the cross-periodogram valuesthem-
selves (without summing over multiple blocks) hasN = 1, and
thus even for the minimal dimension of 2 which is necessary for a
cross-periodogram, this form of complex Wishart distribution fails
to describe the distribution of the raw cross-periodogram values. We
may also determine the raw cross-periodogram distributiondirectly,
as follows.

Proposition 1. Let x1 and x2 be complex Normal distributed ran-
dom variables with complex covariance Σ. Then the random vari-
able s = x1x

∗
2 is a complex Normal Variance Mean Mixture with χ2

distributed mixing density.

Proof. Define the Cholesky factorizationΣ = T
H
T, where

T =

[

T11 T12

0 T22

]

with T11, T22 > 0. Thenx = [x1 x2]
T can be represented as

x = Tz, wherez = [z1 z2]
T with z1 andz2 complex Normal and

independent. Then we have,

x1x
∗
2 = (T11z1 + T22z2)T22z

∗
2

= T11z1z
∗
2 + T12T22|z2|2

= |z2|T11e
−φ2z1 + |z2|2T12T22

Thusx1x
∗
2 is distributed as a Normal Variance Mean mixture dis-

tribution with mixing variableξ = |x2|2, which has aχ2 distribu-
tion.

The resulting Gaussian scale mixture has a Mackay’s BesselK
distribution [4]. Note that Mackay’s BesselK distribution has expo-
nential, log concave tails. Student’st distribution, which has mixing
densityinverse gamma distributed, does not admit skew because it
has asymptotically algebraic tails, while skewed NVMMs require
exponential tails [4].

3.3. Generalized Inverse Gaussian and Generalized Hyperbolic

The Generalized Inverse Gaussian (GIG) density [4, 8, 9] canbe
thought of as a combination and generalization of the gamma and
inverse gamma distributions. The GIG density has the form,

N †
(

ξ ; λ, δ2, κ2) =
(κ/δ)λ

2Kλ(δκ)
ξλ−1 exp

(

−1
2

(

δ2ξ−1+κ2ξ
))

(3)

for ξ > 0, whereKλ is the BesselK function, or modified Bessel
function of the second kind. The moments of the Generalized In-
verse Gaussian are easily found by direct integration, using the fact
that (3) integrates to one,

E{ξr} =

(

δ

κ

)r
Kλ+r(δκ)

Kλ(δκ)
(4)



The parametersλ, δ, andκ are redundant given the scale. As we will
estimate the scale of the complex normal and the norm of the drift
vector directly, we will eliminate this redundancy by setting κ = 1
in the mixing density.

The generalized hyperbolic distribution [4], in dimensiond, is
the Normal Variance Mean Mixture with GIG mixing density. We
write the generalized hyperbolic density in the form,

GH(x; Σ, β, δ, λ) =
1

(2π)d/2|Σ|1/2

1

δλKλ(δ)
×

(

δ(x)

κ(β)

)λ−d/2

Kλ−d/2

(

δ(x)κ(β)
)

exp(βT Σ−1
x)

whereδ(x) ,

√

δ2 + ‖x‖2
Σ−1

andκ(β) ,

√

1 + ‖β‖2
Σ−1

.

4. MAXIMUM LIKELIHOOD BY EM

Given the mixing random variableξ, a NVMM is Normal,

p(x; Σ, β) =

∫ ∞

0

N
(

x ; ξβ, ξΣ
)

p(ξ)dξ (5)

Writing out the “complete likelihood” of(ξ,x), we get,

p(ξ,x; Σ, β, δ, λ) = (2π)−d/2|Σ|−1/2ξ−d/2p(ξ; λ, δ)

× exp
(

− 1
2

ξ−1
x

T Σ−1
x + β

T Σ−1
x − 1

2
ξ β

T Σ−1
β

)

(6)

It can be seen that the posterior density ofξ given x is also GIG.
Taking the logarithm, we see that we require two posterior moments,
E{ξ|x} andE{ξ−1|x}. which are found using (4) to be,

E{ξr|x; Σ, β, δ, λ} =

(

δ(x)

κ(β)

)r Kλ−d/2+r(δ(x)κ(β))

Kλ−d/2(δ(x)κ(β))

In the case of the complex cross-spectra, the complex random
variable can be seen as a two dimensional random vector contain-
ing the real and imaginary parts. In this case the variance isjust a
scalar,Σ = σ2, giving the cross-spectral amplitude correlation. Let
x be the vector of real and imaginary parts of the cross-periodogram
statistic, so that the cross-periodogram is inR

2.
The maximization steps can be computed in closed form. De-

fine ξt , E{ξ|xt; Σ, β, λ, δ} andγt , E{ξ−1|xt; Σ, β, λ, δ}, in
dimensiond = 2, and define the quantities,

a = 1
N

∑N
t=1 γt, b = 1

N

∑N
t=1 ξt

Also letc = 1
N

∑N
t=1 xt. Then the updates are given by,

β = c/b (7)

σ2 = 1
2
a − c

T
β + 1

2
b ‖β‖2 (8)

This algorithm monotonically increases the likelihood with no step
size parameters.

We may also fit the parameterδ by gradient ascent on the com-
plete log likelihood as follows,

∆δ ∝ Kλ+1(δ)

Kλ(δ)
− 2λ

δ
− aδ
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Fig. 3. Fits using the EM algorithm. Top row: one model,λ = 0.
Bottom row: two modelsλ1 = 0, λ2 = 1. Theδ parameters were
optimized with theσ and β parameters. Last panel demonstrates
monotonicity of the closed form algorithm.

5. DISCUSSION AND CONCLUSION

The probabilistic EM framework allows straightforward extension to
a mixture of complex NVMM densities. In Figure 3, we see in the
top row that while the Maximum Likelihood fit of a single general-
ized hyperbolic is log convex and more likely than the singleWishart
model, it nevertheless poorly captures the coherence tail.The bot-
tom row of Figure 3 shows that the ML estimate of a mixture densi-
ties, a non-coherent (circular) complex GSM and a coherent NVMM
(non-circular) density, yields a good fit. This is not surprising since
examination of the data shows that the signals are not oscillating
at alpha continuously, but only over certain periods. The mixture
model then gives an estimate of the relative proportions of the co-
herent and non-coherent periods, as well as a simple Bayesian detec-
tion for the (blindly learned) coherence model vs. the non-coherent
model. The EM algorithm provides monotonic convergence with
closed form updates.
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