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ABSTRACT

This paper analyzes the rate of convergence of greedy gossip with
eavesdropping (GGE). In previous work, we proposed GGE, a fast
gossip algorithm based on exploiting the broadcast nature of wire-
less communications rather than location information. Assuming all
transmissions are wireless broadcasts, nodes can keep track of their
neighbors’ values by eavesdropping on their communications. Then,
when it comes time to gossip, a node greedily and myopically gos-
sips with the neighbor whose value is most different from its own,
rather than with a randomly chosen neighbor. Previously, we have
proved that GGE converges to the average consensus on connected
network topologies and demonstrated that GGE outperforms stan-
dard randomized gossip (RG). In this paper we study the rate of con-
vergence of GGE in terms of network voracity which is a topology-
dependent constant analogous to the second-largest eigenvalue char-
acterization for RG. Simulations demonstrate that the convergence
rate of GGE is superior to existing average consensus algorithms
such as geographic gossip.

Index Terms— Distributed signal processing, gossip algo-
rithms, average consensus, wireless sensor networks.

1. INTRODUCTION AND BACKGROUND

Distributed consensus and gossip algorithms are a promising tool for
performing distributed signal processing tasks. In particular, these
methods have received considerable attention, for applications in
wireless sensor networks (see, e.g., [1-3] and references therein),
because they do not require overhead for forming or maintaining
routes, nor do they suffer from any sort of bottleneck near a fusion
centre since they are fully decentralized. Existing fast algorithms
for average consensus in wireless network-like topologies rely on
exploiting geographic location information at each node to speed
up gossiping. However, location information may not be available
when a network is initially deployed, and existing location-based al-
gorithms are not applicable when nodes are mobile.

In this paper we analyze a fast gossip algorithm that does not use
location information. Instead, via wireless broadcast transmissions,
we allow a node to track the values at its neighbors, and then per-
form myopic, greedy updates based on this information. This algo-
rithm was introduced in [4], and is referred to as greedy gossip with
eavesdropping (GGE). Gossip algorithms have previously been ana-
lyzed using techniques from the theory of Markov chains, and their
rate of convergence is typically characterized by the second largest
eigenvalue of a transition matrix derived from the gossiping mech-
anism. However, because of the greedy, adaptive update involved
in GGE, there is no analogous time-homogeneous Markov structure
to study. Instead, we analyze convergence properties of GGE by
showing that it solves a convex optimization problem. Similar to the

second largest eigenvalue rate of convergence bounds for random-
ized gossip, we bound the rate of convergence of GGE in terms of a
topology-dependent constant, which we term network voracity, that
quantifies the amenability of a particular topology to greedy gossip-
ing. We study network voracity for random geometric graphs via
simulation.

The prototypical example of a consensus problem is that of com-
puting the average consensus: initially, each node in a network has
a scalar piece of information, and the goal is to compute the av-
erage at every node. The two most widely studied algorithms for
solving the average consensus problem are distributed averaging,
tracing back to the seminal work of Tsitsiklis [5], and randomized
gossip (RG) [6]. In distributed averaging, every node broadcasts in-
formation to its neighbors at every iteration. However, information
diffuses slowly across the network in this scheme since the infor-
mation at each node typically does not change much from iteration
to iteration. Randomized gossip operates at the opposite extreme,
where only two neighboring nodes exchange information at each it-
eration. At the kth iteration, a node s is chosen uniformly at random;
it chooses a neighbor, ¢, randomly; and this pair performs the update.
The fact that nodes only exchange information with their neighbors
is attractive from the point of view of simplicity and robustness.
However, it also means that in typical wireless network topologies
(grids or random geometric graphs [7]), information diffuses slowly.
Boyd et al. [6] prove that for random geometric graphs, RG requires
O(n?) transmissions. This slow convergence, and the consequent
poor scaling with network size, is undesirable for large-scale sensor
network applications, where each transmission consumes valuable
(and scarce) energy resources.

Slow convergence of RG motivated Dimakis et al. to develop ge-
ographic gossip. In [3], they show that assuming each node knows
its geographic location and the locations of its neighbors, the long-
range information exchanges significantly improve the rate of con-
vergence to roughly O(ng/ %) transmissions. However, this improve-
ment comes at the cost of increased complexity, since the network
must now provide two-way transmission over many hops. Similarly,
Jung et al. [8] advocate using the geographic locations of nodes to
construct /ifted Markov chains directing the information exchange to
accelerate gossip. These approaches rely on geographic information
and thus are not suitable to scenarios where location information is
not available.

Aysal et al. propose broadcast gossip, which makes use of the
broadcast nature of wireless networks [9]. At each iteration, a node
is chosen uniformly at random to broadcast its value. The nodes in
the broadcast range of this node update their value with the weighted
average of their own value and the broadcasted value. In this manner,
broadcast gossip achieves rapid convergence, but introduces bias.

The remainder of this paper is organized as follows. In Section 2
we review the formal definition of GGE. In Section 3 we develop a



bound relating the performance of GGE to that of standard RG. In
Section 4 we develop a worst-case bound on the rate of convergence
of GGE. In Section 5 we investigate the behavior of GGE empirically
and find that it performs at least as well as other gossip algorithms.
Finally, Section 6 summarizes the contributions of the paper.

2. GREEDY GOSSIP WITH EAVESDROPPING (GGE)

We consider a network of n nodes, and represent network connec-
tivity as a graph, G = (V, E), with vertices V = {1,...,n} and
edge set E C V x V such that (4, j) € E if and only if nodes 7 and
7 directly communicate. We assume that communication relation-
ships are symmetric and that the graph is connected. Let A; = {j :
(¢,4) € E} denote the set of neighbors of node . Each node has an
initial value y;, and the goal of the gossip algorithm is to compute
y = % >, yi at every node while only exchanging information
between neighboring nodes. Initially, each node sets its gossip value
to z;(0) = y;, and broadcasts it so that neighbors are all aware of
each others’ values.

At the kth iteration of GGE, a node sj is chosen uniformly at
random. This can be accomplished using the asynchronous time
model described in [10]. The selected node, s; identifies a node
te € argmaxien; {(zs, (k) — z(k))?/2} . That is, since each
node is eavesdropping on its neighbors’ communications, it is aware
of their most recent values, and thus can select ¢5 to be a neighbor
whose value is most different from its own. Then sy and ¢, exchange
values and perform the update z., (k) = @, (k) = (@5, (k — 1) +
1, (k — 1)) /2. GGE updates can also be expressed in the matrix
form

a(k +1) = WP (k)a(k)
where WECF (k) is a stochastic matrix w1th entries WGP (k) =
WSS (k) = WGP (k) = WGP (k) = 5. WP (k) = 1 for
all ¢ ¢ {sk,tr}, and O elsewhere. The standard approach for con-
vergence analysis of gossip algorithms, viewing the algorithm as a
Markov chain, cannot be applied here since the matrix WS (k) is
data-adaptive. In [4] we show that GGE is a randomized incremen-
tal subgradient algorithm [11] for the convex optimization problem,
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and the recursive update for GGE results in
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where the vector g(k) is a subgradient of the si-th component of the
objective function and is defined as: gs, (k) = zs, (k—1) — ¢, (k—
1), g¢, (k) = —(xs, (k — 1) — 24, (k — 1)) and O elsewhere.

In [4], we characterized the convergence behavior by demon-
strating that GGE converges almost surely to the consensus value, as
a direct consequence of (3). The main idea is that, so long as z (k) is
not a consensus, ||g(k)|| > 0 with positive probability, and thus, the
algorithm makes monotonic progress to the solution.

3. GGE VS. RANDOMIZED GOSSIP

The following theorem establishes a general expression for the
bound on the mean-squared error of GGE after k iterations and

demonstrates that the upper bound on the MSE of GGE is less than
or equal to the upper bound on the MSE of RG. We denote the ap-
plication of k successive RG updates by WZ& = H’? WEE(4).
Likewise, let WISF = H L WEYPE(5) denote the successive

application of k¥ GGE updates. Let W = E[W7(k)] denote the
expected RG matrix with the second largest eigenvalue Az (W).

Theorem 1. Let the input, x(0), be given, and let T denote the cor-
responding average consensus vector. After k iterations, the mean
squared error of GGE is upper bounded as follows:

E [|WiZ2(0) - 2] < Jl2(0 —xn?H (A2 (W) - &) @

where &, = 0 if E[||WSFE2(0) — ||?] = 0, and otherwise,
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Remark 1. The analogous expression for RG is simply [6]

) llz(0) —Z|2. (6

Since & > 0, the upper bound on GGE is uniformly upper bounded
by the upper bound for RG, for any input x(0). The upper bound for
random gossip is tight. In practice it means that even for its worst
case input, GGE performs at least as well as RG for RG’s worst case
input.

The form of the terms & also provides insight into which sce-
narios are less favorable for GGE. In particular, when the aver-
age neighborhood-wise maximal squared difference is equal to the
doubly-averaged squared difference, being greedy does not provide
any gain.

E[||Wi 2(0) — 2[*] < A2 (W

Proof of Theorem 1. Using the convergence rate bounds for RG, (6),
we can identify a related relationship derived from applying £ — 1
steps of GGE followed by one step of RG:
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Now we can bound the error of GGE by adding and subtracting the
effects of making the k-th step a RG update:

E[||Wik "z (0 )—w)\l *] = B[ Wi (0) — 2)|°]
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Repeated application of this inequality yields (4). O



4. GGE CONVERGENCE RATE: WORST CASE UPPER
BOUND AND NETWORK VORACITY

The rate of convergence for gossip algorithms is typically quantified
in terms of the e-averaging time,
) < e} .

Gossip algorithms such as RG and geographic gossip are easily re-
lated to a homogeneous Markov chain. Tj..(€) can be shown to
scale as a function of the second largest eigenvalue of the probabil-
ity transition matrix, W, of this chain [6]. In particular, Tove(e) <
3loge” !

log /\gg(W) -1
GGE depends on the gossip values at each node, z(k), our algorithm
cannot be related back to a homogeneous Markov chain. The goal
of this section is to bound the rate of convergence of GGE through
alternative means. To this end, our main result is the following.

~ (k) — 2|
Tave(€) = sup mf{k Pr =
2(0)#0 (H (0) —z[ —

Since the greedy decision made in each iteration of

Theorem 2. Let G = (V, E) denote the graph on which we are gos-
siping, let x(k) denote the vector of GGE values after k iterations,
and let T denote the average vector. Then

Elllz(k) — 2] < A(G)*||l=(0) - |,
where A(Q) is the graph-dependent constant defined as

ma m 2 ( ).

and g (x) refers to a subgradient of the v-th component of the ob-
Jective function in (1). Moreover, the e-averaging time for GGE is
bounded above by

A(G)

3loge?!
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Remark 2. Note that A(G) is to GGE as \2(W) is to RG, in terms
of bounding the averaging time. We refer to A(G) as network vo-
racity, since it quantifies how well a particular topology is suited to
greedy, myopic updates.

Proof of Theorem 2. The proof of the first part of the claim is based
on an approach introduced in [12]. We begin by recalling the recur-
sion for the mean squared error of GGE after k iterations expressed
in (3):

o) —al = (1= g MO Y ot = 1) -

Let M (k) = ||2(k) — Z||? denote the error after k iterations, and let
N(k)=1- % denote the amount of contraction at it-

eration k. Using these definitions and some successive conditioning,
we get
E[M (k)] E[N (k)M (k — 1)]

E[E[N (k)M (k — D)|z(k - 1)]]

MO)E[E[N (1)[(0)] - - - E[N (k)| (k — 1)]].

Note that A(G) is defined in such a way that E[N (k)|z(k — 1)] <
A(G) for all k. Therefore, it follows that

Ellz(k) —2|*] < A@G)"[«(0) - z|*.

Next, we prove the second part of the claim: the bound on e-
averaging time. By applying Chebyshev’s inequality, we have

Pr(llz(k) — 2] > ell(0) - 7ll) < %
< € AG)R. )

To get an upper bound on Tgve(€), note that Pr(||z(k) — Z|| >

ll(0) — Z[|) < € provided that k > [2loEE O

5. NUMERICAL SIMULATIONS

In this section we compare the performance of GGE with RG [6]
and geographic gossip [3]. We also investigate the scaling behav-
ior of the communication complexity using the bound established
in Section 4. In our experiments, we focus on random geometric
graphs [7], constructed by distributing nodes uniformly at random
over the unit square. The transmission radius is set to \/2logn/n.

We first compare the convergence rates of the three algorithms
by examining the reduction they achieve in relative error which is
defined as % All figures show averages over 100 realiza-
tions of the random geometric graph and 100 runs of the algorithm
per graph. We examine performance for a linearly-varying field and
a field with the “spike” signal, constructed by setting the value of
one random node to 1 and all other node values to 0. Figs. 1(a)
and (b) show that GGE converges towards the average at a much
faster rate than RG for both initializations. The initial convergence
of GGE is faster than geographic gossip for the field with a spike
but is very similar for the linearly-varying field. On the other hand,
asymptotically the algorithms achieve similar rate. For GGE, the
linearly-varying field is the worst case, as was anticipated from the
convergence analysis conducted in Section 3.

Finally, we examine how the communication complexity scales
with respect to the number of nodes in the network. Since there is no
closed-form solution for A(G), we solve the optimization problem
identified in Theorem 2 numerically, using an incremental subgradi-
ent algorithm. The network voracity can be expressed as
1 n

— — min max(r; — x;
2N zz 4 ljeN,-( i)
i

2

AG) =1

and we can further focus on a simplified problem

n
/ _ . )2
A(G) = min ) max(z; — ;)

i=1

where X = {z | Z = 0,||z(k)||* = 1}. Then A(G) = 1 —
A'(G)/2n. We approximate the solution to this minimization using
a projected incremental subgradient method. To avoid the problem
of local minima (since the constraint set is non-convex) we rerun
the optimization algorithm from multiple initial conditions. Figure 2
displays how A(G) and the theoretical bound on the averaging time
change as the number of nodes n is increased. To obtain these data-
points, we generated 50 random geometric graphs for each value of
n, and using the described procedure evaluated A(G) numerically.
Note that the averaging time is plotted in terms of the number of
iterations per node. For comparison purposes, the dotted line depicts
7y/n. This provides some experimental support for a conclusion
that the averaging time is O(n>/?), which implies a communication
complexity similar to geographic gossip.
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Fig. 1. A comparison of the performance of RG, GGE, and geographic gossip for two different initial conditions.
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Fig. 2. The scaling behaviour of A(G) and the bound on the averag-
ing time T4 (€) for € = 0.01 as n grows. The dashed line which is (6]
7+/n is plotted for comparison purposes.
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6. SUMMARY

(9]
In this paper we analyzed the convergence behavior of greedy gos-
sip with eavesdropping (GGE), an algorithm we proposed in [4].
The theoretical contributions of this paper are (i) a bound on the [10]
mean-squared error of GGE; (ii) a bound on the e-averaging time of
GGE; and (iii) a proof that GGE always converges faster than RG
and a characterization of how the convergence rate differs. Simu- [11]
lations compare the performance of GGE, RG [6], and geographic
gossip [3]. The simulations also investigated the scaling behavior
of the communication complexity of GGE, and provided some evi- [12]
dence that it is O(nd/ %), similar to geographic gossip. A theoretical
characterization of the scaling of this communication complexity is
the focus of our current research.
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