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ABSTRACT

Audio segmentation is an essential preprocessing step in several au-

dio processing applications with a significant impact e.g. on speech

recognition performance. We introduce a novel framework which

combines the advantages of different well known segmentation

methods. An automatically estimated log-linear segment model is

used to determine the segmentation of an audio stream in a holistic

way by a maximum a posteriori decoding strategy, instead of clas-

sifying change points locally. A comparison to other segmentation

techniques in terms of speech recognition performance is presented,

showing a promising segmentation quality of our approach.

Index Terms— speech recognition, audio segmentation, broad-

cast news transcription

1. INTRODUCTION

Audio segmentation is a vitally important task in several audio

processing applications like speaker diarization, speaker tracking,

and automatic speech recognition (ASR). The requirements on the

segmentation differ depending on the application. This paper con-

centrates on speech recognition applications, in particular broadcast

news transcription.

The quality of the segmentation affects the recognition perfor-

mance in several ways: Speaker adaptation and speaker clustering

methods assume that a segment is spoken by a single speaker. The

language model performs better if segment boundaries correspond

to boundaries of sentence-like units [1]. Furthermore, non-speech

regions, like music and other sounds often occurring in broadcast

news shows, may cause insertion errors and should be detected and

removed. Regions with overlapping speech are not recognized cor-

rectly in most cases and should be separated to limit the impact on

the recognition of surrounding speech. Obviously, segment bound-

aries positioned inside a spoken word deteriorate the recognition

quality as well.

Various segmentation methods have been investigated in the lit-

erature, which can be categorized into 3 classes [2]. Decoder-guided

segmentations use the output of a speech recognition system, e.g. si-

lence regions recognized. Model-based approaches classify acoustic

regions and divide the audio stream at changes in the acoustic class.

A distance between adjacent regions in the audio stream is used in

metric-based methods, e.g. the KL distance or the Bayesian infor-

mation criterion. Techniques relying solely on acoustic features tend

to produce longer segments, because their focus is often primary to
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detect changes in acoustic conditions. In [1, 3] it was shown that the

usage of ASR output improves the segmentation w.r.t. recognition

performance.

The method proposed in this paper combines the advantages of

ASR-, model-, and metric-based approaches by incorporating sev-

eral features of a segment. Furthermore, the decision of positioning

a segment boundary is not made locally, but by considering the seg-

mentation of the complete audio stream. This global optimization of

the segmentation is done by a form of maximum a posteriori (MAP)

decoding. The model used for segment classification has been es-

timated on a manual segmentation. A preliminary version of our

approach was presented in [4]. Moreover, we trained a classifier

to label the automatically generated segments and to remove non-

speech segments.

Since the objective of this task is to improve the recognition per-

formance, we measured the segmentation quality in terms of word

error rate obtained on the segmented audio data.

In the remainder of this paper, the broadcast news transcription

system used is described in Section 2, and the proposed segmen-

tation method in Section 3. Experimental results are presented in

Section 4, and conclusions are drawn in Section 5.

2. RECOGNITION SYSTEM

In the acoustic front end, consisting of MFCC features, vocal tract

length normalization (VTLN) is applied to the filterbank. The VTLN

warping factors are estimated online by a Gaussian mixture classi-

fier. For the recognition of unsegmented data, the warping factors

are estimated every second on a sliding window (7s wide). On seg-

mented data, the warping factor is estimated segment-wise.

In an initial recognition pass, the unsegmented data is processed

with a speaker independent acoustic model. During decoding, transi-

tions from “sentence-end” to “sentence-start” are hypothesized, too

(as proposed by [1, 5]). The results of this recognition pass, includ-

ing confidence scores, are used for the segmentation process. The

resulting segments are clustered using a generalized likelihood ratio

clustering with Bayesian information criterion based stopping con-

dition. The segment clusters act as speaker labels as required by the

adaptation techniques applied.

The recognition of the segmented data is performed in two

passes. The output of a speaker independent recognition pass is used

as input for the text dependent speaker adaptation. CMLLR feature

transformations and MLLR mean transformations are estimated us-

ing the segment clusters. The transformed features and models (the

models were trained speaker adaptively) are used during the second

speaker dependent recognition pass.



3. AUDIO SEGMENTATION

3.1. Segmentation Framework

The segmentation task can be formulated as an optimization prob-

lem for a given set of possible boundaries. Each time frame t corre-

sponding to a possible boundary is assigned to the class “boundary”

(class 1) or to the class “no boundary” (class 0): bT
1 = (b1, . . . , bT )

with bt ∈ {0, 1}. Instead of classifying a boundary independent of

all other boundaries, we optimize the complete segmentation:

b̂T
1 = argmax

bT
1

: bT =1

n

p(bT
1 |XT

1 )
o

where XT
1 is a sequence of arbitrary features which will be specified

in Section 3.2. Using this formulation we can consider segments

in place of boundaries, which allows us to use context dependent

features of the segmentation. A sequence bT
1 implies the segments

[ti, tj ] with bti
= btj

= 1 and bt = 0 ∀ti < t < tj .

For the first segment we define b0 := 1.

The probability of a sequence bT
1 for given features XT

1 is

p(bT
1 |X

T
1 ) =

T
Y

t=1

p(bt | b
t−1

1 , XT
1 ) .

We assume that the probability of a time frame t being in class bt de-

pends on the time frames t′, t of the segment [t′, t] it terminates and

on the features for this segment. By introducing the index sequence

τN
1 := {τ | bτ = 1, 1 ≤ τ ≤ T}

of the boundaries in bT
1 and by using the dependency model assump-

tion, p(bT
1 |X

T
1 ) can be modeled by

p(bT
1 |X

T
1 ) =

N
Y

n=1

“

p(bτn | τn−1, τn, XT
1 )

·

τn−1
Y

t=τn−1+1

p(bt | τn−1, t, X
T
1 )

”

where p(bτn | τn−1, τn, XT
1 ) is the probability for the right bound-

ary of segment [τn−1, τn] (bτn = 1 for all n). The second product

gives the probability that all time frames inside this segment belong

to class “no boundary” (bt = 0 ∀t /∈ τN
1 ).

We model the class posterior probability of a segment boundary

directly using a log-linear model:

p(b|t, t′, XT
1 ) =

exp
`
P

i
λi,b fi(t, t

′, XT
1 )

´

P

1

c=0
exp

`
P

i
λi,c fi(t, t′, XT

1 )
´

where the fi(t, t
′, XT

1 ) are feature functions, which will be defined

in the next section, and the λi,c are class specific feature weights.

The optimization problem over the 2T−1 possible segmentations

can be solved using dynamic programming, utilizing the first order

dependency of a segment boundary on the previous boundary. The

auxiliary function Q(t) gives the probability of the best segmenta-

tion ending at time t:

Q(t) = max
t′<t

n

p(bt′

1 |XT
1 ) · p(1 | t′, t, XT

1 ) · Z(t′, t − 1)
o

= max
t′<t

n

Q(t′) · p(1 | t′, t, XT
1 ) · Z(t′, t − 1)

o

Q(0) := 1

Where

Z(tb, te) =

te
Y

t=tb+1

p(0 | tb, t, X
T
1 )

is the probability that no boundary occurs inside the segment

[tb, te + 1].
In our implementation we constrain the search space by allow-

ing only segments with a length between 1 and 30 seconds. Further-

more, our implementations uses sums of negative logarithms of the

probabilities for reasons of efficiency and numerical stability.

Boundaries are hypothesized at time frames, where either si-

lence, sentence end, or noise has been recognized. In principle, other

change point detection methods can be applied to generate a set of

boundary hypotheses. However, in this paper we consider only ASR-

based boundaries.

3.2. Segment Features

The feature functions fi(t
′, t, XT

1 ) used in the previous section rep-

resent specific features of a segment [t′, t]. We analyzed the follow-

ing features in the experiments presented:

segment length The length of the segment.

words The number of words recognized inside the segment.

boundary length The length of the boundary token (i.e. the silence

or non-speech region) recognized at the end of the segment.

boundary confidence The confidence score of the boundary token

recognized.

warping factor variance The variance of the VTLN warping fac-

tors classified inside the segment (see Section 2). This feature

should give an estimate of the speaker homogeneity in a seg-

ment.

BIC score We apply the Bayesian Information Criterion (BIC)

to the acoustic feature vectors (unnormalized MFCCs) in a

window around the segment end and compute the BIC “dis-

tance” [6, 7]. This distance yields a feature for changes in

the acoustic condition. If there is silence recognized at the

segment end, we remove the corresponding feature vectors

and enlarge the window accordingly. Hereby we can detect

for example a speaker change with a longer pause between

the two speakers.

signal type From the results of the speech/non-speech detection

(see Section 3.4) we compute the degree of signal type ho-

mogeneity in the segment as the proportion of the maximum

over the length of time frames labeled as non-speech, music,

or speech relative to the segment length.

sentence end A binary feature which is 1 if the boundary token re-

cognized at the end of the segment is a sentence end symbol.

Furthermore, a zero-th feature f0(t
′, t, XT

1 ) := 1 is added to inte-

grate an offset value. Second-order features can be augmented or

used instead of the first-order features:

fi,j(t
′, t, XT

1 ) := fi(t
′, t, XT

1 ) · fj(t
′, t, XT

1 ) , i ≥ j

The framework proposed is not limited to ASR-based features,

but can incorporate any segment or boundary dependent feature.

3.3. Segment Model Training

In the training process the feature weights λi,c are optimized in a dis-

criminative way according to the maximum entropy criterion using

the generalized iterative scaling (GIS) algorithm.

First, we automatically transcribed the recordings of the training

corpus using the boundary-enabled recognition system (Section 2).

Then feature vectors for class “boundary” were computed for all

segments corresponding to a segment in the reference transcription

(Section 4.2). Feature vectors for class “no boundary” were cal-

culated for segments with the reference segment beginning as start

time frame and an end time frame at any possible boundary either

before the reference segment end or inside the next reference seg-

ment. Thus, we assign both too long and too short segments to class

“no boundary”.



3.4. Speech vs. Non-speech Detection

The speech/non-speech detection system consists of 3-state HMMs

for the signal types speech, non-speech, pure music, and a 1-state

model for silence. As suggested in [8], a separate model for speech

in the presence of background noise was added. Furthermore, we

used gender dependent speech models. Gaussian mixtures are used

as emission models. In total we used 576 densities for the 19 HMM

states with mixture specific diagonal covariance matrices.

The mixture models were trained on 9.5h audio material (train-

ing corpus, cf. 4.2) labeled with the 5 classes. Silence is not la-

beled in the reference transcriptions, but was hypothesized during

the forced Viterbi alignment of pure speech segments. Thus, the si-

lence model should not contain background noise.

The acoustic front end consists of MFCC features (13 coeffi-

cients, mean and variance normalized) with first and second deriva-

tives. Similar to [8], the zero-th coefficient is not included, but its

derivatives.

To incorporate a-priori probabilities for the individual signal

types, we estimated a bigram “language model”. This model con-

sists of relative frequencies of the signal type bigrams in the training

corpus. To include silence in the model, we used the results of

the forced alignment of the training corpus. Using this model, we

incorporate also transition probabilities automatically estimated for

intra signal type HMM state transitions

The non-speech detection is applied to both unsegmented and

segmented data. The results of the detection on unsegmented data

are used to generate signal type features for the segmentation.

3.5. Segment Rejection and Post-processing

Insertion errors produced by the recognizer can be reduced by re-

moving non-speech data. Therefore, segments almost completely

labeled as non-speech or music were removed. Furthermore, we

shrunk segments which had more than 0.6s of silence at the seg-

ment end (and hence at the begin of the next segment). The silence

frames were not completely removed, but 0.2s were kept. A similar

procedure was used in [3].

4. EXPERIMENTAL RESULTS

Since the purpose of the segmentation is to improve the recognition

performance, we measure the segmentation quality in terms of word

error rate achieved on the audio data segmented. However, the com-

putational effort for a 2-pass recognition is high, even for a relatively

small development corpus. Therefore, not every manually adjusted

parameter of the system (e.g. the size of sliding windows) has been

analyzed yet.

4.1. Recognition System

The acoustic front end consists of MFCC features derived from a

bank of 20 filters. VTLN is applied to the filterbank as described

in Section 2. We use 16 cepstral coefficients (including the zeroth

coefficient) which are normalized using cepstral mean and variance

normalization. These MFCC features are augmented with a voiced-

ness feature. 9 consecutive feature vectors in a sliding window are

concatenated and projected to 45 components by applying an LDA.

We used 45 phonemes in across word triphone context, which

are modeled by 3-state HMMs. A phonetic decision tree tied the tri-

phone states to 4500 generalized triphone states. The pronunciation

dictionary contains 58k words. The acoustic model consists of 1.1M

densities with a globally pooled diagonal covariance matrix. The

4-gram language model consists of 61M multi-grams.

Table 1. Data sets used.
training dev eval-1 eval-2

audio data [h] 9.5 1.0 2.6 3.0

running words 99.3K 9K 22K 31K

reference segments 3288 173 418 938

avg. ref. seg. length [s] 10.3 19.4 23.3 11.5

OOV rate [%] 0.0 0.6 0.8 0.8

Table 2. Recognition results (WER [%]) obtained on the dev set

using segmentations produced with first- and second-order features.

feature order pass

1st 2nd 1 2

X 16.4 14.5

X 16.3 14.3

X X 16.3 14.2

4.2. Data Sets

All experiments were carried out on American English broadcast

news data. Table 1 lists the corpus statistics.

We used parts of the Hub-4 training corpus to estimate the

segmentation models. The rich transcriptions were split at speaker

change, background change, overlapping speech, and at annotated

sentence boundaries to produce a fine grained segmentation.

The development set used for parameter tuning and feature se-

lection consists of two recordings from the NIST RT-03S Evalua-

tion corpus (STT, English broadcast news). The original corpus was

reduced to keep the parameter tuning feasible. The evaluation set

eval-1 is the English broadcast news part from the EARS RT-04F

STT development set and eval-2 is the 1998 Hub4 Evaluation cor-

pus.

The manual segmentation used for development and evaluation

sets is derived from the reference transcription provided with the

corpus and thus contains mainly speaker changes. Therefore, the

number of segments (relative to the recording length) in the training

set is higher than in the two other sets.

4.3. Feature Evaluation

In a first step, the impact of first- and second-order features (using

all segment features) is analyzed. From Table 2 can be seen, that

using both first- and second-order features yields the best results.

Proceeding from this result, we studied the impact of the individual

segment features. The results of these experiments are shown in

Figure 1. For the first pass recognition, the signal type feature is the

most important one. Due to the speaker adaptation applied in the

second pass, the BIC feature yields the biggest performance gain for

the final result.

4.4. Recognition Results

A comparison of different segmentation approaches is shown in Ta-

ble 3. We compared the error rates obtained using unsegmented

data, a manual segmentation, a segmentation produced by the pub-

licly available NIST segmenter contributed by CMU [9], and a fixed

length segmentation, where each segment is 15s long. In addition,

we applied a simple ASR-based method which split the recordings

at silence regions longer than some threshold. This approach makes

local decisions, disregarding context, properties of surrounding seg-

ments, and speaker changes. The results labeled as “MAP segmen-

tation” were obtained using a segmentation produced with our new

approach (all segment features, 1st and 2nd order features). As ex-

pected, the unsegmented and the fixed length segmentation produce
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Fig. 1. Impact of discarding individual features on the recognition

performance. (sty: signal type, ste: sentence end, bic: BIC score,

bln: boundary length, bcf: boundary confidence, wfv: warping fac-

tor variance, wrd: words, len: segment length)

Table 3. Comparison of several segmentation methods in terms of

WER [%] for pass 1 (p.1) and pass 2 (p.2).

segmentation dev eval-1 eval-2

method p.1 p.2 p.1 p.2 p.1 p.2

none 19.6 - 30.3 - 21.3 -

15s segments 19.3 17.0 29.9 27.2 22.2 20.6

NIST 16.4 14.5 28.6 25.6 19.7 17.7

ASR-based 17.3 15.3 27.3 24.8 19.5 17.7

MAP 16.3 14.2 27.3 24.9 18.9 17.0

manual 15.4 13.4 26.6 23.9 17.7 15.8

the worst results. The segmentation method introduced yields bet-

ter results than the segmentation produced by the NIST segmenter.

The segmentation of the dev- and the eval-2 corpus using our new

approach yields better results compared to the other automatic seg-

mentations. On the eval-1 corpus, the simple ASR-based method

works slightly better, albeit the overall recognition performance is

quite low on this set.

The effectiveness of the non-speech rejection is shown in Ta-

ble 4. The number of deletion errors increases only slightly, while

the number of insertion errors drops noticeable. The total number

of errors was reduced for all corpora, using both the manual and the

automatically generated segmentation.

5. CONCLUSIONS

We presented a novel MAP decoder framework for audio segmenta-

tion incorporating several segment features using log-linear models.

This framework is applicable for various segment or boundary fea-

tures and for different change point detection methods. Furthermore,

constraints, like the maximum segment length or the maximum num-

ber of words per segment, are easy to integrate. It was shown that the

segmentation has a significant impact on the quality of a subsequent

automatic transcription.

The improvements achieved in recognition performance are

promising, but there is still room for further improvements before

reaching the quality of a manual segmentation. In principle it should

be possible to generate a segmentation, which yields better recogni-

tion performance than the reference segmentation, because e.g. not

all sentence boundaries are annotated. Nevertheless, we achieved a

Table 4. Effect of automatic non-speech rejection on the deletion-,

insertion-, and total word error rate [%]. Results given for manual

and MAP segmentation.

seg. w/ non-speech w/o non-speech

corpus method del ins WER del ins WER

dev
MAP 2.9 3.4 17.7 2.9 2.0 16.3

manual 2.5 3.3 16.6 2.5 2.1 15.4

eval-1
MAP 5.3 4.5 27.9 5.3 3.9 27.3

manual 4.9 4.4 27.0 5.0 4.1 26.6

eval-2
MAP 3.9 2.6 19.0 3.9 2.5 18.9

manual 3.4 3.0 18.2 3.6 2.4 17.7

better recognition performance compared to both the acoustic- and

the ASR-based segmentation.

Future research subjects are the usage of multiple classes for dif-

ferent types of segment boundaries and the addition of more bound-

ary hypotheses by e.g. acoustic change point detection. By adding

boundary hypotheses at acoustic change points, e.g. speaker changes

with overlapping speech could be detected. Furthermore, the appro-

priateness of other segment features could be analyzed.
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