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ABSTRACT
In recognizing spontaneous speech, the performance of typical
speech recognizers tends to be degraded by filled and silent pauses,
which are hesitation phenomena frequently occurred in such speech.
In this paper, we present a method for improving the performance
of a speech recognizer by detecting and handling both filled pauses
(lengthened vowels) and silent (unfilled) pauses. Our method auto-
matically detects these pauses by using a bottom-up acoustical anal-
ysis in parallel with a typical speech decoding process, and then
incorporates the detected results into the decoding process. From
the results of experiments conducted using the CIAIR spontaneous
speech corpus, the effectiveness of the proposed method was con-
firmed.

Index Terms: spontaneous speech, filled pause, silent pause, acous-
tic model, language model

1. INTRODUCTION

Current state-of-the-art speech recognition systems can achieve high
recognition accuracy for read speech or spoken dialogue in limited
domains. However, the recognition of spontaneous speech still re-
mains problematic because such speech includes various phenom-
ena such as filled and silent pauses, repairs, hesitations, repeti-
tions, and partial words. To improve the accuracy for spontaneous
speech, novel improvement techniques to reduce the recognition er-
rors caused by such phenomena are required.

As a first step toward dealing with such natural phenomena in
speech recognizers, we focus on two important phenomena, namely,
filled pauses (lengthened vowels) and silent (unfilled) pauses. While
filled and silent pauses play an important role in spoken language,
for example, in helping a speaker hold a conversational turn and ex-
press mental and thinking states [1][2], these pauses tend to cause
recognition errors in typical speech recognition systems. For exam-
ple, a Japanese sentence “ee- washoku- no resuto-ran’ e ...” (En-
glish translation: “er, to a Japanese food restaurant ...”) includes
three filled pauses (lengthened vowels), which are represented by
“-” and underlines. Note that in this paper we use the term “filled
pause” for a vowel-lengthening phenomenon such as a filler (e.g.,
“ee-”, “maa-”, and “ano-” in Japanese) and a lengthened vowel dur-
ing a word. In the above Japanese sentence, three types of filled
pauses appear (1) as a filler “ee-” (“er” in English) (2) at the end
of a word “washoku-” (“Japanese food” in English), and (3) within
a word “resuto-ran” (“restaurant” in English). Although acoustical
properties of filled pauses are common in most languages, their prob-
able positions in an utterance depend on languages — for example,
the latter two types, (2) and (3), are quite popular in Japanese spon-
taneous speech. On the other hand, the term “silent pause” basically
means a temporal region in which a speaker does not utter during a

word, phrase, or sentence in spontaneous speech. In particular, dur-
ing spontaneous conversations (at least in Japanese), relatively long
silent pauses tend to be inserted at any positions in an utterance, both
within a word as well as between words.

Several previous methods have dealt with filled pauses in speech
recognition. In [3], a language model that considers speech disflu-
ency was presented. In [4], filled pauses were incorporated into pro-
nunciation variations for lexical modeling. Most of these approaches
assumed that filled pauses can be dealt with as words in a system
vocabulary and that a speech recognizer can reliably generate hy-
potheses containing such pauses as words. However, Stouten et al.
[5] reported that this assumption is often wrong because it is dif-
ficult to predict the occurrences of filled pauses by using acoustic,
language, and pronunciation models (lexicons). Therefore, they pro-
posed a method that uses an independent filled-pause detector to re-
duce speech recognition errors caused by disfluencies. This method
[5] first segments the input speech into phoneme-like segments, and
then judges whether each segment is a filled pause or not (i.e., de-
tects a filled pause) by using a neural network before speech recog-
nition. All the frames of the detected filled-pause segments are then
ignored when decoding, resulting in the avoidance of recognition er-
rors caused by filled pauses. Although this method is effective for
fillers such as “uh” and “uhm”, it did not take into account a filled
pause at the end of a word or within a word, which we deal with by
using a bottom-up acoustical analysis without segmenting the input
speech. Moreover, this method did not deal with silent pauses at all.

In this paper, we present a robust recognition method that can
deal with both filled and silent pauses in spontaneous speech in
Japanese. First, two detectors, one for filled pauses and the other
for silent pauses, identify the beginning and end times of each pause
in the input speech. Then the detected pauses are utilized to con-
trol the decoding process in our speech recognizer. Since both pause
detectors are based on a bottom-up acoustical signal analysis, our
method has two advantages:

• It can handle all types of filled pauses, regardless of where a
filled pause occurs in utterances — i.e., as a filler (between
words), at the end of a word, or within a word.

• It does not depend on training data, task domains, and languages.

In the following sections, we first present an overview of our method
and explain the filled and silent pause detectors. We then present a
decoding method using the detection results. Finally, we present
the results of several experiments using a large-scale spontaneous
speech database and confirm the effectiveness of our method.
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Fig. 1. System overview.

2. SPEECH RECOGNITION BASED ON FILLED AND
SILENT PAUSE DETECTION

The basic concept of our method is to control a decoding process
on the basis of the output of filled and silent pause detectors. In our
method, this modified decoding based on detected pauses is carried
out only for utterances including detected pauses, and normal de-
coding is carried out for the other normal utterances. In this manner,
for normal utterances, we can minimize the recognition errors that
might be caused by our modified decoding.

2.1. System overview

Figure 1 shows the overview of our recognizer. The first step is to
use the filled and silent pause detectors to identify the beginning and
end times of filled and silent pauses in the audio signals of the input
speech. Then, a modified decoding by skipping the detected pauses
is conducted to obtain speech recognition results. However, since
such a skipping process implies the intentinal manipulation (short-
ening) of input utterances, it might cause an acoustic mismatch be-
tween the testing and training data. In order to reduce the acoustic
mismatch and incorporate the acoustic changes caused by the skip-
ping process, we introduce the re-training of acoustic models by us-
ing the pause detection. Even in the training data of the acoustic
models, our system automatically detects filled and silent pauses in
a similar manner. By using the beginning and end times of these
pauses, it removes these temporal regions from the acoustic feature
sequences (e.g., MFCCs) of the training data. The acoustic model
is then re-trained on these sequences without the detected filled and
silent pauses.

2.2. Filled pause detection method

To detect filled pauses, we use a real-time detection method proposed
by Goto et al. [2]. The basic idea of this method is to find acoustical
features of filled pauses in speech signals by using frequency analy-
sis. If filled pauses (lengthened vowels) are uttered while the speak-
ing process is waiting for the next speech content from the thinking
process, a speaker cannot change the articulator parameters during
the filled pauses because subsequent utterances have not yet been
prepared. Hence, the method assumes that a filled pause contains a
continuous voiced sound of an unvaried phoneme, because such a
sound is uttered when the vocal cords are vibrated with almost con-
stant articulator parameters (i.e., with a constant vocal-tract shape).
This method accordingly detects filled pauses on the basis of the fol-
lowing two features:

1. Small F0 (fundamental frequency) transition
When the tension of the vocal cords is unvaried under constant
articulator parameters, the F0 of the voice remains almost con-
stant.

2. Small spectral envelope deformation
When the vocal tract shape is unvaried under constant articula-
tor parameters, the spectral envelope forming the formants re-
mains almost constant. When the deformation of the envelope
is evaluated, it is necessary to eliminate the air flow’s amplitude
modulation, since the air flow from the lungs may vary.

The method determines the beginning and end times of each filled
pause by finding the above two acoustical features of filled pauses.
Experimental results for a Japanese spontaneous speech corpus
showed that this method can detect, in real time, filled pauses with a
recall rate of 84.9% and a precision rate of 91.5%. For more details,
see [2].

2.3. Silent pause detection method

For silent pause detection, we can apply several techniques that were
originally developed for audio classification and segmentation tasks
[6]. In this work, we employ an energy-based speech/silence classi-
fier, i.e., silent pauses are detected based solely on the log energy of
the input speech signals.

2.4. Decoding method with pause skipping

We introduce a pause skipping mechanism into a typical time-
synchronous Viterbi search (baseline recognizer), as shown in Figure
2. When the search process arrives at the beginning time (frame) of
a detected pause, all the nodes (HMM states) at this frame are main-
tained (stored). The search process does not decode anything at each
frame during the pause region — i.e., each detected pause is skipped
in decoding. Finally the search process is resumed from the end time
of the pause region by using the maintained node information.

Note that in the case of silent pauses, an extra operation is re-
quired in the decoding process. If all the frames of a silent pause
between words are skipped (discarded) completely, the identifica-
tion of the word boundary in the decoder becomes very difficult, and
this may lead to more recognition errors than the baseline recognizer.
Therefore, in this work, some frames (i.e., a short silent region) are
not discarded but retained for the decoding process. In more detail,
the length of each detected silent pause is shortened to a fixed length
(0.1 sec. in this paper).

This decoding method might be considered almost equivalent
to a method that first removes the temporal regions of pauses di-
rectly from the acoustic feature sequences (MFCCs) and then per-
formes recognition by using a regular recognizer without any exten-
sion. However, direct handling of the pause information during the
decoding process has the advantage of affording a variety of possibil-
ities for further improvements and extensions such as incorporating
linguistic context information around each type of pauses into the
decoding process, and dynamically controlling decoding parameters
(language model scaling factors, word insertion penalties, etc.) in
the decoding process.

3. EXPERIMENTS

To investigate the effectiveness of our method, we conducted recog-
nition experiments with actual spontaneous speech data.
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Fig. 2. Decoding with pause skipping.

3.1. Database

We evaluated our method on the CIAIR in-car speech database [7],
which includes a large amount of speech data collected in the form
of real-world spoken dialogues in a car. This database contains mul-
tichannel data recorded from 16 microphones that are placed in var-
ious positions, and we used the speech data recorded at the “driver
headset” position. Note that this speech data is relatively clean as
compared to that from the other channels. Filled and silent pauses
occur frequently in the speech data because the CIAIR database con-
sists of utterances of car-navigation dialogues that were recorded
while each speaker was driving an actual car in a town. In our eval-
uation, since utterances in which our filled-pause detector does not
detect filled pauses are simply recognized by a regular recognizer
without any extension, we excerpted test-set utterances including
filled and silent pauses from the CIAIR database (11190 utterances
by 101 speakers) as follows. First, the filled-pause detection was
performed with all the utterances in the data set. By doing so, filled
pauses were detected for 1658 utterances, and therefore, we set aside
these utterances as the test set. Note that these 1658 utterances also
include silent pauses.

3.2. Baseline recognizer

The baseline recognizer was constructed on the CIAIR database. For
the training data of acoustic modeling, we used 79093 utterances by
401 drivers. The speech recognizer uses a Japanese syllable-based
HMM [9] that consists of 245 acoustic units. This acoustic model
has no context dependencies across the acoustic units (i.e., mono-
syllable). For the training data of the language model, we used the
transcriptions of the spoken dialogue (94306 sentences). A bigram
language model was trained on this text data. The vocabulary size
was 6528.

The conventional way of handling pauses was incorporated in
the baseline language model. With regard to handling filled pauses,
Japanese fillers were modeled in the language model by using tran-
scriptions from the CIAIR. On the other hand, word-end silent
pauses were modeled in the lexicon by adding a short-pause (SP)
phone at the end of every pronunciation.

3.3. Experimental results and discussion

The experimental results of our proposed method are summarized in
Figure 3. In this figure, “Baseline” indicates the word accuracy of the
baseline recognizer, “FP” (filled pause) and “SP” (silent pause) indi-
cate the word accuracy of the decoding method wherein each type of
the detected pauses was incorporated independently, and “FP+SP”
(filled and silent pauses) indicates the word accuracy of the decod-
ing method wherein both types of the detected pauses were incorpo-

Fig. 3. Performance improvement of our proposed method (FP +
SP).

rated. We also show the recognition performance in which the acous-
tic model was re-trained by using the training data after skipping the
detected pauses. In the following sections, we show the evaluation
of each method individually and discuss the performance.

3.3.1. Evaluation of recognition with filled-pause detection

First, we compare the recognition performance using the filled-pause
detector (FP) with the baseline recognition (Baseline). As shown in
Figure 3, the word accuracy was improved (71.15% ⇒ 73.01%), and
it was found that filled-pause detection is helpful for spontaneous
speech recognition. In addition, acoustic-model re-training achieved
a further improvement (73.01% ⇒ 73.61%). By investigating the
recognition results in detail, we found that larger improvements were
obtained for word-end filled pauses (e.g., “washoku-”) and word-
internal filled pauses (e.g., “resuto-ran”).

In spoken dialogue tasks such as those in this experiment, filled
pauses tend to occur in the case of any proper nouns (e.g., shop name,
place name, and product name) uttered by a speaker. Therefore, it
is very difficult to expect the occurrences of such filled pauses even
if we train a language model or a lexical model. Furthermore, our
method could suppress insertion errors for filler words that have a
longer duration (e.g., “ee-” and “ano-”).

3.3.2. Evaluation of recognition with silent-pause detection

Next, we compare the performance of the recognition using the
silent-pause detector (SP) with the baseline recognition (Baseline).
As shown in Figure 3, the word accuracy was improved (71.15%
⇒ 72.48%) by the silent-pause detection. By using the proposed
method, we confirmed larger improvements, especially for within-
word silent pauses. The following are examples of utterances in-
cluding a silent pause (denoted as “[sp]”) that were not correctly
recognized by the baseline recognizer and resulted in two or three
incorrect word fragments:

• Utterance where “hoteru” (“hotel” in English) was uttered as “ho
[sp] teru”

• Utterance where “imaikeshiten’” (“Imaike branch” in English)
was uttered as “imai [sp] keshiten’”

Our method was able to correctly recognize both of these exam-
ples (i.e., the performance was improved in these cases). In a real
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•Transcript ： gasorin’sutan’do ni iki tai 

•Utterance ： ga [sp] sorin’ sutan’do ni iki tai

•Baseline ： ga sou ni sutan’do ni iki tai

•Proposed ： gasorin’sutan’do ni iki tai

•Transcript ： no   kaijou e

•Utterance ： no   [sp] kai [sp] jo [sp] e

•Baseline ： dokka ii   ji dou itte

•Proposed ： no   kaijou e

Example 1

Example 2

(` Ì wanna go to a gas station …’’ in English)

(`` … to the palace of …’’ in English)

Fig. 4. Examples of improvements obtained by our proposed method.
“Transcript” shows a correct word sequence, “Utterance” shows an
actual utterance with filled pauses (“-” with underlines) and silent
pauses [sp], “Baseline” shows a recognition result by the baseline
method without any extension, and “Proposed” shows a recognition
result obtained by our proposed method by skipping both filled and
silent pauses.

world spoken dialogue, since a speaker tends to utter while thinking,
such silent pauses occur even within a word. In particular, “syllable-
stressed speech” [8] that occurs in making error recovery utterances
tends to include a silent pause within a word. It is therefore impor-
tant to improve the performance for such utterances.

Note that it was generally difficult to improve the performance
on a silent pause between words because the lexicon used in the
baseline language model has already dealt with such a silent pause.
When noise sounds such as breath, tongue clicking, and small in-
car noise were observed during long silent pauses between words,
however, they caused some insertion errors with the baseline recog-
nition. Our method with the energy-based detector correctly ignored
most of these small noise sounds below a threshold and improved
the performance.

3.3.3. Evaluation of recognition with filled and silent-pause detec-
tors

Finally, we describe the recognition results of the filled and silent
pause detectors (FP+SP). As shown in Figure 3, the improvements
obtained by using both detectors together were better than those ob-
tained by using each detector alone. As compared to the baseline
recognition (Baseline), it eventually increased the word accuracy
from 71.15% to 74.73%. This suggests that both filled and silent
pauses actually occurred in spontaneous speech or dialogues such
as those in the CIAIR database. Both filled and silent pauses can
sometimes occur within just one word. Figure 4 shows examples of
such utterances that were actually observed in our experiment. In
Example 1, an utterance of “gasorin’stan’do”(“gas station” in En-
glish) includes a silent pause “ga [sp] sori” and a filled pause “n’-”
within this word. In Example 2, an utterance of “kaijou” (“venue” in
English) includes a silent pause “kai [sp] jo-” within this word and
a filled pause “jo-” at the end of this word. In addition, two other
silent pauses also occurred before and after the word “kaijou”. As
shown in this figure, the results of the baseline recognition included
insertion errors, but those of our proposed method showed signifi-
cant improvements for these difficult utterances. We thus confirmed
the effectiveness of dealing with both filled and silent pauses in the
decoding process.

4. CONCLUSIONS

In this paper we presented a decoding method that can reduce
recognition errors caused by filled and silent pauses in spontaneous
speech. These two types of pauses are detected independently by
using their acoustical features, and the detection results are used to
control the decoding process so that it can skip such pauses. Our pro-
posed method achieved significant improvements on a spontaneous
dialogue speech corpus.

Future work will include improvements in our decoding method
and further evaluations using other tasks or corpora. Since we used
a context-independent acoustic model (syllable model) in the exper-
iments, we will extend the decoding method to handle a context-
dependent acoustic model, which would result in a higher perfor-
mance. Furthermore, we plan to incorporate the decoding method
into our public web service, “PodCastle” [10][11], that provides
full-text searching of podcasts on the basis of automatic speech
recognition. Since spontaneous speech in podcasts covers a wider
variety of speech data and often includes filled and silent pauses, the
decoding method proposed in this paper must be effective.
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