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ABSTRACT

We present a new feature extraction technique for phonem

recognition that uses short-term spectral envelope andulaed
tion frequency features. These features are derived frdvband
temporal envelopes of speech estimated using Frequencyaidom
Linear Prediction (FDLP). While spectral envelope feasuaes ob-
tained by the short-term integration of the sub-band epeslipthe
modulation frequency components are derived from the teng-
evolution of the sub-band envelopes. These features arbineth

at the phoneme posterior level and used as features for adhybr

HMM-ANN phoneme recognizer. For the phoneme recognitisk ta
on the TIMIT database, the proposed features show an imprene
of 4.7% over the other feature extraction techniques.

modulations alone provides nearly perfect human speedgnéc
tion [4]. This further emphasizes the importance of expigitem-
Boral amplitude modulations as alternative feature regmasions
for ASR. In order to exploit the information in these modidat
frequencies, relatively long segments of speech signal tede
analyzed [5]. For example, the more recent feature extna¢éch-
niques like [6, 7] use the long-term dynamics of the sub-bamd
ergies for phoneme recognition. Combining the short-tquatsal
information with modulation frequency components has alsmvn
to improve phoneme recognition performance [8].

In this paper, we develop a feature extraction techniqué tha
combines the short-term spectral envelope features andotige
term modulations features. The spectral envelope featumasnod-
ulation frequency features are both derived from the saniilin

Index Terms— Spectral envelope and Modulation frequency yyo-dimensional (time-frequency) representation of shetat is

features, Phoneme Recognition, Frequency Domain Linesti€r
tion

1. INTRODUCTION

Time-varying spectrum of speech is usually derived as assempiof
short-term spectral vectors, each vector representirtgriteneous
values of spectral magnitudes at the individual carrieqdencies.
An alternative functionally equivalent representatiom isollection

of temporal envelopes of spectral energies at the indiVidaaier

frequencies. The Fourier transform of these time-varyargporal

envelopes yields a set of modulation spectra of speech,endash
modulation spectral value represents the dynamics of theakat

the given carrier frequency.

Conventional acoustic features for Automatic Speech Raeog
tion (ASR) systems are typically based on the first of the tep r
resentations, i.e. on the short-term spectrum. They aractgd by
applying Bark or Mel scale integrators on power spectraheses
in short analysis windowsl() — 30 ms) of the speech signal. The
signal dynamics are represented by a sequence of shorféatuore
vectors with each vector forming a sample of the underlyimgess.
These features are appended with derivatives of the spéetiec-
tory at each instant to enhance the local speech variatibypcal
examples of such features are the Mel Frequency Cepstrdfi-Coe
cients (MFCC) [1] and Perceptual Linear Prediction (PLR) [2

On the other hand, it has been shown that important informati
for speech perception lies in the— 16 Hz range of the modulation
frequencies [3]. Furthermore, in the presence of limiteelctal
information, it has been shown that the use of temporal anusi

formed by sub-band temporal envelopes. Specifically, $psigoals

in frequency sub-bands are analyzed over long temporal esgigm
using the Frequency Domain Linear Prediction (FDLP). Thé.FD
technique fits an all pole model to the squared Hilbert empelaf
the signal [9]. These representations of the speech sigaalie

to capture fine temporal events associated with transiemtgvike
stop bursts while at the same time summarize the signal’'ssgro
temporal evolution in timescales of several hundred neidands
[10].

In our case, the auditory spectrogram, which is a two-dinogs
representation of the input signal, is obtained by stackiregsub-
band temporal envelopes in frequency (similar to the starkif
short-term spectral estimates in time for the conventiéeaiures).
The short-term spectral envelopes are derived by integyatie
auditory spectrogram in short analysis windows and the tasdu
tion frequency components are obtained by the applicaficosine
transform on the compressed (static and adaptive compmgdsing-
term sub-band temporal envelopes. The spectral envel@perés
and the modulation features are combined at the phonemerjaost
level and used as features for the hybrid Hidden Markov Medel
Artificial Neural Network (HMM-ANN) phoneme recognition sy
tem [11]. Experiments on a phoneme recognition task usieg th
TIMIT database compare the proposed features with othéuariea
extraction techniques.

The rest of the paper is organized as follows. In Sec. 2, the
FDLP technique for deriving sub-band envelopes is desdrifiéie
conversion of these sub-band envelopes into spectral @welnd
modulation frequency features is explained in Sec. 3. Exparts
with the proposed features for a phoneme recognition taskear

This work was supported by the European Union 6th FWP IST- Inte POrted in Sec. 4 along with a comparison of the results foother

grated Project AMIDA and the Swiss National Science Foundahrough
the Swiss NCCR on IM2.

feature extraction techniques in the literature. In Sewes¢onclude
with a discussion of the proposed features.
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Fig. 3. Static and dynamic compression of the temporal envelopes.
(a) a portion of the temporal envelope of a speech signaktéijc
compression (logarithm) and (c) adaptive compressionguadtap-

tive loops.

and frequency domain, the sub-band Hilbert envelopes caivaeq
lently be used for obtaining the sub-band energy based-stont

Fig. 2. Deriving sub-band temporal envelopes from speech signagpectral envelope features. This is achieved by integyatia sub-

using FDLP

2. FREQUENCY DOMAIN LINEAR PREDICTION

FDLP is an efficient technique for auto regressive (AR) miogebf
temporal envelopes of a signal [10]. It represents a dudinigoe
to the conventional Time Domain Linear Prediction (TDLP)tthe
case of TDLP, the AR model approximates the power spectrum ofhe long-term sub-band envelopes from the FDLP form a compac
the input signal, whereas FDLP fits an all pole model to théétil
envelope (squared magnitude of the analytic signal).
The FDLP technique is implemented in two parts - first, theing a static compression scheme which is a logarithmic fanand
discrete cosine transform (DCT) is applied on long segmefits a dynamic compression scheme [14]. The dynamic compregsion
speech to obtain a real valued spectral representatioreddigimal.
Then, linear prediction is performed on the DCT repres@anab
obtain a parametric model of the temporal envelope. Figlus-il

trates the AR modeling of FDLP. It shows (a) a portion of speec

signal, (b) its Hilbert envelope computed using the Foureamsform
technique [12] and (c) an all pole approximation to the HitlEn-
velope using FDLP. The block schematic for extraction ofbahd
temporal envelopes from speech signal is shown in Fig. 2.

3. DERIVING FEATURES FROM SUB-BAND
TEMPORAL ENVELOPES

The sub-band temporal envelopes, estimated using FDLRoare
verted into spectral envelope and modulation frequendyfes.

3.1. Spectral envelope features

The Hilbert envelope, which is the squared magnitude of tiee a
lytic signal, represents the instantaneous energy of akigrthe
time domain. Since integration of signal energy is ideiicaime

band temporal envelopes in short term frames (of the orde5 ais

with a shift of 10 ms). These short term sub-band energies are then
converted intol3 cepstral features along with their first and second
derivatives (similar t@9 dimensional PLP features [2]). Each frame
of these spectral envelope features is used with a cont&dfrafmes

for training a phoneme posterior probability estimator][13

3.2. Modulation features

representation of the temporal dynamics over long regidrihe
speech signal. The sub-band temporal envelopes are casagras-

realized by an adaptation circuit consisting of five consieetnon-
linear adaptation loops [14]. Each of these loops consigglivider
and a low-pass filter with time constants ranging fromms to500
ms. The input signal is divided by the output signal of the-joass
filter in each adaptation loop. Sudden transitions in thetsard
envelope that are very fast compared to the time constantiseof
adaptation loops are amplified linearly at the output du&¢ostow
changes in the low pass filter output, whereas the slowlygihgrre-
gions of the input signal are compressed. This is illustratd=ig. 3
which shows (a) a portion of temporal envelope of a speeatakig
(b) logarithmically compressed temporal envelope andhe)tem-
poral envelope compressed with the adaptive compressimnse
The compressed temporal envelopes are divided 20tb ms
segments with a shift of0 ms. Discrete Cosine Transform (DCT)
is applied on the static and the adaptive segments to yieldtttic
and the adaptive modulation spectrum respectively. Wd #isaod-
ulation frequency components from each cosine transforeiging
modulation spectrum in theé — 70 Hz region with a resolution of
5 Hz. This choice is a result of series of optimization expeins
(which are not reported here). The static and adaptive ratidul
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Fig. 4. Schematic of the joint spectral envelope-modulationuies for posterior based ASR

Table 1. Recognition Accuracies (%) of broad phonetic classesimdtifrom confusion matrix analysis

Class PLP FDLP-S| M-RASTA FDLP-M | PLP+M-RASTA FDLP-S+FDLP-M
Vowel 85.3 84.9 82.4 85.7 86.1 87.3
Diphthong | 78.2 79.1 74.2 76.8 78.4 79.8
Plosive 83.8 82.8 81.6 84.1 84.6 85.4
Affricative | 73.5 74.4 68.6 75.6 72.9 78.0
Fricative | 85.8 85.9 83.5 86.8 86.4 88.0
Semi Vowel | 76.2 74.9 72.9 77.1 77.8 79.0
Nasal 84.2 82.8 80.4 84.9 85.8 86.6
Avg. 81.0 80.7 77.7 81.6 81.7 834
features for each sub-band are stacked together to obtaiilazo A neural network, with sufficient capacity, trained on enoug
tion features for each sub-band and fed to the posteriorabibity data estimates the true Bayesian a-posteriori probalpility. The
estimator. scaled likelihood in an HMM state is given by Eq. 1, where we

We combine the spectral envelope and modulation frequencgssume equal prior probabilit#(¢; = ¢) for each phoneme =
features at the phoneme posterior level using the Dempsi@ieS 1,2...39. The state transition matrix is fixed with equal probabili-
(DS) theory of evidence [15]. Fig. 4 shows the schematic ef th ties for self and next state transitions. Viterbi algoritisnapplied to

proposed feature extraction technique. decode the phoneme sequence.
Experiments are performed on the TIMIT database, excluding
4. EXPERIMENTS AND RESULTS ‘sa’ dialect sentences. All speech files are sampletbdHz. The

training data consists (000 utterances fron375 speakers, cross-

The phoneme recognition system is based on the Hidden Markovalidation data set consists 696 utterances fron#7 speakers and
Model - Artificial Neural Network (HMM-ANN) paradigm [11]. the test data set consists1if44 utterances from68 speakers. The
The MLP estimates the posterior probability of phonemesmgine ~ TIMIT database, which is hand-labeled usiy labels is mapped
acoustic evidenceé’(¢; = ilz:), wheregq, denotes the phoneme to the standard set of phonemes [13]. A three layered MLP is
index at framet, z; denotes the feature vector. The relation be-Used to estimate the phoneme posterior probabilities. Eheark
tween the posterior probabilit’(¢; = i|z;) and the likelihood IS trained using the standard back propagation algorithth eross

P(x¢|q: = 1) is given by the Bayes rule, entropy error criteria. The learning rate and stoppingedon are
controlled by the error in the frame-based phoneme claasiit on
pxe|gr = 17) Plq = i|z:) the cross validation data. In our system, the MLP consist)06

p(xr) Plg = 1) @ hidden neurons, an®h output neurons (with soft max nonlinearity)



Table 2. Phoneme Recognition Accuracies (%) for different feature

extraction techniques

PLP 68.3
FDLP-S 68.1
M-RASTA 64.9
FDLP-M 69.3
PLP+M-RASTA | 70.0
FDLP-S+FDLP-M | 71.4

representing the phoneme classes. The performance of ipleone
recognition is measured in terms of phoneme accuracy asasell
the recognition accuracy of broad phonetic classes. In dued
ing step, all phonemes are considered equally probabletmuhge
model). The optimal phoneme insertion penalty that givegima
mum phoneme accuracy on the cross-validation data is usédeo
test data.

Table 1 summarizes the results for the experiments with FDLP

based spectral envelope features and modulation featarethe
recognition of broad phonetic classes. In the base-linerxents,
the proposed features are compared with two other featuracex
tion techniques on the same task - the PLP features witframe
context [13] which are similar to spectral envelope featuterived
using FDLP (FDLP-S) and M-RASTA features [6] which are samil
to features derived using FDLP from the modulation spe &L P-
M). We combine the spectral envelope and modulation frecuen
features using the DS theory of evidence to obtain two matufe

sets - PLP features with M-RASTA features (PLP+M-RASTA) and

FDLP-S features with FDLP-M features (FDLP-S+FDLP-M). Ta-
ble 2 shows the results for phoneme recognition accuraciess
all individual phoneme classes for these techniques. ThePF®
features provide comparable results as the PLP-9 feafihesmod-
ulation features (FDLP-M) result in improved phoneme rettgn
rate for all the broad phonetic classes compared to the MIRAS
features and hence, provide significant improvements iiviohd
ual phoneme recognition rate (Table 2). Further, the jgieictal
envelope and modulation features yield improved phonerasscl
recognition for all the broad phonetic classes comparebdadase-
line system. We obtain a relative improvement9dt % over the
baseline system for recognition of broad phonetic classesam
improvement of4.7 % (which is statistically significant) in the
individual phoneme recognition rate.

5. CONCLUSIONS

We have proposed a novel method of extracting spectral epeel
and modulation features for ASR. The spectral envelopeifeade-
rived from sub-band temporal envelopes are comparablereece
tional features that are derived from short-term power tspkeesti-
mates. The FDLP based modulation features are significhatber
than other features based on the modulation spectrum. @ambi
the spectral envelope and modulation features providesfisiant
improvements over the base-line system for phoneme retogni
tasks.
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