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ABSTRACT
We present an approximation to the Bayesian hierarchical Pitman-
Yor process language model which maintains the power law distribu-
tion over word tokens, while not requiring a computationally expen-
sive approximate inference process. This approximation, which we
term power law discounting, has a similar computational complexity
to interpolated and modified Kneser-Ney smoothing. We performed
experiments on meeting transcription using the NIST RT06s evalua-
tion data and the AMI corpus, with a vocabulary of 50,000 words and
a language model training set of up to 211 million words. Our results
indicate that power law discounting results in statistically significant
reductions in perplexity and word error rate compared to both inter-
polated and modified Kneser-Ney smoothing, while producing sim-
ilar results to the hierarchical Pitman-Yor process language model.

Index Terms— language model, smoothing, absolute discount,
Kneser-Ney, Bayesian, Pitman-Yor, power law

1. INTRODUCTION

Smoothing is crucial when estimating a language model (LM), and
a large number of methods have been proposed in the literature [1],
including interpolated Kneser-Ney [2] and modified Kneser-Ney [1]
smoothing which are generally regarded as the best approaches
in practice. The Kneser-Ney approaches are based on absolute
discounting, with lower order distributions reflecting the marginal
constraints. In addition to exploring further constraints and more
efficient algorithms [3], there has been a recent body of work in
which the Kneser-Ney methods have been shown to approximate
a hierarchical Bayesian language model which incorporates a non-
parametric prior distribution, the Pitman-Yor process [4]. Our
previous work [5] demonstrated the practical application of hier-
archical Pitman-Yor process language models (HPYLM) to large
vocabulary automatic speech recognition (ASR) of conversational
speech in multiparty meetings, indicating that this model can offer
consistent and significant reductions in perplexity and word error
rate (WER), compared to both an interpolated Kneser-Ney LM
(IKNLM) and a modified Kneser-Ney LM. (MKNLM). However
estimation of an HPYLM is expensive, requiring sampling, which
hinders it from wide application to large vocabulary ASR even with
a parallel training algorithm [6].

One of the most remarkable statistical properties of word fre-
quencies in natural language is the fact that they follow a power law
distribution, i.e., P (cw = x) ∝ x−d where cw is the number of oc-
currences of word w in a corpus and d is a constant. The well-known
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Zipf’s law equivalently states the fact in terms of the frequency rank-
ing of words: a few outcomes have very high probability while most
outcomes occur with low probability. It follows that a stochastic
process, such as the Pitman-Yor process [7], that has the “rich-get-
richer” capacity to generate a power law distribution is able to take
advantage of this property for natural language modeling.

In this paper we briefly outline the HPYLM, which offers a
hierarchical Bayesian approach to language modeling, with a non-
parametric prior distribution. Since the HPYLM is a computation-
ally expensive estimate, we present an approximation to it, that we
call power law discounting in which the discounting parameters have
a direct functional form and do not require approximate inference.
Inference in power law discounting has a similar computational com-
plexity to interpolated or modified Kneser-Ney. We evaluate this
new approach to language model smoothing in terms of perplexity
and WER in the domain of multiparty meetings, reporting results
on the NIST RT06s evaluation data and on the AMI corpus. Our
results indicate that power law discounting is a good approxima-
tion to the more computationally expensive HPYLM, and maintains
statistically significant decreases in WER and perplexity compared
with interpolated and modified Kneser-Ney smoothing. Finally we
present some analysis of the power law discounting scheme, includ-
ing a demonstration of the power law property, as well as an investi-
gation of the effect of the discounting parameters.

2. HIERARCHICAL PITMAN-YOR PROCESS
LANGUAGE MODELS

In a Bayesian language model a prior distribution is placed over the
predictive probabilities of the LM, and the posterior distribution is
inferred from the observed training data. The final predictive proba-
bility can then be estimated from the posterior by marginalizing out
the latent variables and hyperparameters. In the HPYLM, Pitman-
Yor processes are recursively placed as priors over the predictive
probabilities in n-gram LMs, resulting a suffix tree hierarchy of
Pitman-Yor process priors. The Pitman-Yor process PY(d, θ,Gb)
is a three parameter distribution over distributions, where d is a dis-
count parameter, θ a strength parameter, and Gb a base distribution
that can be understood as a mean of draws from PY(d, θ,Gb).

The procedure for generating draws G ∼ PY(d, θ,Gb) from a
Pitman-Yor process can be described using the “Chinese Restaurant”
metaphor. Customers enter a Chinese restaurant containing an infi-
nite number of tables and seat themselves. The first customer sits
at the first available table, while each of the subsequent customers
sits either at an occupied table with probability proportional to the
number of customers already sitting there ck − d, or at a new un-
occupied table with probability proportional to θ + dt•, where ck
is the number of customers sitting at table k and t• is the current
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number of occupied tables. Goldwater et al. [8] demonstrated that
a Pitman-Yor process is capable of producing a power law distribu-
tion with index 1 + d over the number of customers seated at each
table . When the Pitman-Yor process is applied to language model-
ing, a restaurant corresponds to a context, customers to word tokens
occurring after the context, and each table to a word type from the
vocabulary.

Let w and w′ be words, u be a context of length n − 1, and
π(u) = u′ be the context that is one word shorter than u with length
n − 2, such that w′u′ = u. In the case of the HPYLM, we obtain
the following expression for the predictive probability:

P (w|u,S,Θ) =
cuw − d|u|tuw

θ|u| + cu•

+
θ|u| + d|u|tu•
θ|u| + cu•

P (w|π(u),S,Θ). (1)

where S denotes latent variables and Θ = {dm, θm : 0 ≤ m < n}
represents hyperparameters. If we set the discounting parameters
d|u| = 0 for all u, we obtain the hierarchical Dirichlet language
model (HDLM) [9].

The overall predictive probability can be approximately ob-
tained by collecting I samples from the posterior over S and Θ, and
then averaging (1) to approximate the integral with samples:

P (w|u) ≈
I∑

i=1

P (w|u,S(i),Θ(i))/I . (2)

If we assume that the strength parameters θ|u| = 0 for all u, and
restrict tuw to be at most 1 (i.e., all customers representing the same
word token should only sit on the same table together), then the pre-
dictive probability in (1) directly reduces to the predictive probability
given by the IKNLM. We can thus interpret IKN as an approximate
inference scheme for the hierarchical Pitman-Yor process language
model [4].

The HPYLM has two principal advantages over interpolated and
modified Kneser-Ney LMs. First the HPYLM utilizes the power law
characteristic of natural language via Pitman-Yor processes for lan-
guage modeling. Second the HPYLM is able to do more flexible
absolute discounting, i.e., specified to each different context u, via
the discount parameter d|u|tuw of the HPYLM and thus also im-
proves over LMs based on a Dirichlet distribution or Dirichlet pro-
cess prior. However, it is much more resource intensive to infer an
HPYLM than the IKNLM or MKNLM for large vocabulary ASR,
even with a parallel training algorithm [6].

3. POWER LAW DISCOUNTING LANGUAGE MODEL

In this section we introduce an efficient approximation to the
HPYLM, in which tuw the number of tables occupied by word
w in the restaurant corresponding to context u is approximated as a
function of cuw, the count of occurrences of word w following con-
text u. This is in contrast to the HPYLM in which this parameter is
obtained using an approximate inference scheme based on Markov
Chain Monte Carlo sampling.

We simplify the notations for d|u| and θ|u| by ignoring the sub-
script |u|. In the HPYLM, the cuw occurrences of a word w follow-
ing context u is discounted by dtuw, i.e., ĉuw = cuw − dtuw. The
approximate inference of tuw is time and memory intensive. How-
ever, the expected number of tables E(tu•) in a Pitman-Yor process
used in the HPYLM follows a power law growth with cu• where
• denotes the marginal operation [10]. Based on this observation,

we therefore propose a power law discounting LM (PLDLM) which
smoothes n-grams as follows:

d=
n1

n1 + 2n2
(3)

tuw = f(cuw) = cduw (4)

tu• =
∑
w

tuw =
∑
w

cduw (5)

P PLD(w|u) = max(cuw − dtuw, 0)

θ + cu•
+

θ + dtu•
θ + cu•

P PLD(w|π(u))(6)

The parameter d corresponds to the traditional discount parameter
in the IKNLM for (|u| + 1)-grams, n1 and n2 are the total number
of n-grams with exactly one and two counts and θ is the strength
parameter. The estimate of tuw in (4) significantly simplifies the
model while maintaining the most important part of the HPYLM:
the power law characteristic. Another key issue for the PLDLM is
the modified counts cu′w for lower order (n − 1)-grams of context
u′, as shown in (8). {

tuw = 0 if cuw = 0;
1 ≤ tuw < cuw if cuw > 0;

(7)

cu′w =
∑

u:π(u)=u′
tuw =

∑
w′

tw′u′w (8)

The strength parameter θ can be estimated using the same tech-
nique as that for the HPYLM, i.e., a sampling method based on aux-
iliary variables [10]. Since the model is insensitive to θ, as demon-
strated in Section 6, we can alternatively set the values empirically,
or simply ignore θ in (6). In our experiments in section 5 we set
θ = 0.

We can decide on the number of discount parameters, denoted
as p, to be used in the PLDLM, i.e., using one for each for cuw =
1, 2, . . . , p−1 and another for all cuw ≥ p. The PLDLM exactly re-
duces to the IKNLM when p = 1. The PLDLM with p = 3, PLD3,
is directly comparable to the MKNLM since both have three free
discount parameters, except that the PLDLM takes a more straight-
forward form (dcduw) than the MKNLM [1]. The amount of discount
in the PLDLM is a function of counts cuw, which grows slowly as
the count increases.

4. MARGINAL CONSTRAINTS

Kneser and Ney [2] demonstrated the importance of preserving the
marginal constraints in language modeling. Following [1, 10], we
show that the PLDLM satisfies the marginal constraints when the
strength parameter θ = 0, and we use the predictive probability in
(6) and modified counts in (8):

cu′w
cu′•

=
∑
w′

cw′u′

c•u′
P PLD

w′u′(w) (9)

cu′w =
∑
w′

cw′u′

[
cw′u′w − dtw′u′w

cw′u′
+

dtw′u′P PLD

u′ (w)

cw′u′

]

=
∑
w′

(
cw′u′w − dtw′u′w + dtw′u′P PLD

u′ (w)
)

= cu′w − dtu′w + dtu′P PLD

u′ (w) (10)

If we solve this and apply (8) we obtain:

P PLD

u′ (w) =
tu′w
tu′

=

∑
w′ tw′u′w∑

w

∑
w′ tw′u′w

=
cu′w
cu′

(11)
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5. EXPERIMENTS AND RESULTS

We have evaluated the PLDLM using two meeting transcription
tasks: the NIST Rich Transcription 2006 spring meeting evaluation
(RT06s), and the scenario portion of the AMI meeting corpus. In
each case we compared the PLDLM to the IKNLM, the MKNLM
and the HPYLM. We trained the all following trigram LMs using
cutoff values for counts of 1, by using the SRILM toolkit [11] and
the PLDLM program 1. We did not use the strength parameter θ
when training PLDLMs, i.e., we set θ = 0 in (6). We used the AMI-
ASR system [12] as the baseline platform for our ASR experiments,
using all LMs in the first pass decoding.

5.1. NIST Rich Transcription 2006 Evaluation

For the RT06s task we trained LMs on 1.8M words of transcribed
meetings data (meetings-s1), 10.6M words of transcribed conver-
sationaltelephone speech (fisher-03-p1), and web data matched to
meeting (webmeet; 36.1M words) and conversational (webconv;
162.9M words) speech collected using the approach described by
Wan and Hain [13]. In total this resulted in 211.4M words of LM
training data (ALL-1). We performed experiments using a vocab-
ulary of 50,000 words. Table 1 shows the perplexity results on the
NIST RT06s test data rt06seval (31,810 words). We found that, in
all cases, the PLDLM outperforms the IKNLM and the MKNLM,
and has comparably similar results to the HPYLM. The PLDLM
with three discount parameters (PLD3) also results in a slightly
lower perplexity compared to the MKNLM.

Table 1. Perplexity results on NIST RT06s rt06seval.
DATA IKN MKN HPY PLD3 PLD

meeting-s1 110.1 106.5 101.2 105.7 104.3
fisher-03-p1 134.0 128.5 121.4 128.1 122.6

webmeet 176.8 170.6 159.3 169.6 159.7
webconv 135.4 131.8 120.2 130.5 120.8
ALL-1 107.0 105.2 98.9 104.6 100.7

Table 2 shows the speech recognition WERs for rt06seval using
LMs trained on ALL-1. The PLDLM is significantly better than the
IKNLM and the MKNLM (weak), with p < 0.01 and p < 0.05 re-
spectively, but is not significantly different to the HPYLM. We also
evaluated using individual data sets, and found that there is no signif-
icant reduction in WER on meeting-s1 and fisher-03-p1, but there are
significant reductions in WER by the PLDLMs on the webmeetings
and webconv conditions, compared to the MKNLM. This may sug-
gest that the increment of discounts in the PLDLM in turn increases
the generalization ability of LMs in if the domain is somewhat mis-
matched.

Table 2. WER (%) results on NIST RT06s rt06seval.
LMS SUB DEL INS WER

IKNLM 14.5 9.7 2.7 27.0

MKNLM 14.4 9.8 2.7 26.8

HPYLM 14.2 9.8 2.6 26.5

PLDLM 14.2 10.0 2.4 26.6

1The executable program for power law discounting language model is
available from http://homepages.inf.ed.ac.uk/s0562315/.

5.2. The AMI Corpus

For the AMI corpus, we trained LMs on 1.7M words of meeting
transcripts (meeting-s2), 3.5M words of conversational speech tran-
scripts (h5etrain03v1), a further 21.2M words of conversational
speech transcripts (fisher-03-p1+p2), and 130.9M words of broad-
cast news transcripts (hub4-lm96), totalling 157.3M words of LM
training data (ALL-2). Again we used a vocabulary of 50,000 words
in our experiments. Table 3 shows the perplexity results on a test set
of 32 AMI scenario meetings amieval (175,302 words). We found
similar observations as those for rt06seval. Moreover, the PLDLM
even slightly outperforms the HPYLM on some corpora, i.e., on
fisher-03-p1+p2 and hub4-lm96.

Table 3. Perplexity results on the AMI meetings amieval.
DATA IKN MKN HPY PLD3 PLD

meeting-s2 114.7 112.0 106.9 110.9 110.9
h5etrain03v1 234.6 223.3 210.6 220.5 210.8

fisher-03-p1+p2 221.2 210.9 200.7 209.7 198.2
hub4-lm96 321.1 301.3 289.1 303.3 282.5

ALL-2 168.6 163.9 158.8 163.7 157.9

Table 4 shows the speech recognition WERs on amieval using
LMs trained on ALL-2. The reduction in WER by the PLDLM is
significant comparing to the IKNLM and the MKNLM, with p <
0.001. Again there is no significant difference between the PLDLM
and the HPYLM (p < 0.15), which to some extent implies that the
PLDLM well approximates the HPYLM.

Table 4. WER (%) results on the AMI meetings amieval.
LMS SUB DEL INS WER

IKNLM 22.2 10.7 5.7 38.6

MKNLM 22.0 10.8 5.6 38.5

HPYLM 21.9 10.8 5.5 38.2

PLDLM 22.0 10.9 5.5 38.3

6. ANALYSIS AND DISCUSSIONS

Absolute Discount. To demonstrate the power law property of dis-
counts in the PLDLM and the HPYLM, we trained a PLDLM using
meeting-s1, and an HPYLM for 300 iterations on the same data. We
plotted average discounts as a function of trigram counts in Fig. 1.
The average discounts of the PLDLM approaches the expected val-
ues of discounts in the HPYLM.

Effect of Strength Parameter θ. To study the effect of strength
parameter θ, we trained a trigram PLDLM using θ on fisher-03-
p1, which has lower perplexity (121.7) than the PLDLM without θ
(122.6). The initial values of θ for were obtained using the auxiliary
sampling method, resulting in θ1 = 3.3, θ2 = 2.25, and θ3 = 2.0.
Each time we ranged one θ over 0 to 100, while keeping the other
two fixed. We evaluated the perplexity on rt06seval as the value of θ
change. Results in Fig. 2 show that the PLDLM is more sensitive to
θ2 and θ3 than θ1, and smaller values of θ2 and θ3 work better.

Effect of Discount Parameter Numbers. To investigate the effect
of discount parameter numbers, we trained various trigram PLDLMs
on fisher-03-p1+p2 by setting p from 1 to ∞ (none), and evaluated
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Fig. 1. Average discounts as a function of trigram counts in the PLDLM and the HPYLM trained on meeting-s1, with different scales for
horizontal axis: first 50 counts (left), first 100 counts (middle), and first 1000 counts(right).

Fig. 2. Effect of strength parameter θ on rt06seval.

perplexity on amieval. As shown in Fig. 3, the perplexity decreases
as the number of free discount parameters increases, which implies
that it is better to use more discount parameters if we have a coherent
way to estimate them, as done in the PLDLM.

Fig. 3. Effect of discount parameter numbers on amieval.

7. CONCLUSIONS

We present in this paper a simple but efficient smoothing technique
for language modeling that makes use of the power law distribu-
tion. The PLDLM estimates a smoothing parameter using power
law discounting directly, thus avoiding expensive approximate in-
ference, while maintaining comparable computational complexity to
the IKNLM and the MKNLM. On the other hand, the PLDLM is an

approximation to the HPYLM, producing similar performance to the
HPYLM and in turn outperforming the IKNLM and the MKNLM.
We conclude that the PLDLM is ready for use in practical large vo-
cabulary speech recognition systems.
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