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THEORETICAL ANALYSES FOR A CLASS OF KERNELS WITH AN INVARIANT METRIC

Akira Tanaka and Masaaki Miyakoshi

Division of Computer Science, Hokkaido University,
N14W9, Kita-ku, Sapporo, 060-0814 Japan.

ABSTRACT

One of central topics of kernel machines in the field of ma-
chine learning is a model selection, especially a selection of
a kernel or its parameters. In our previous work, we dis-
cussed a class of kernels whose corresponding reproducing
kernel Hilbert spaces have an invariant metric and proved that
the kernel corresponding to the smallest reproducing kernel
Hilbert space, including an unknown true function, gives the
optimal model. However, discussions for properties that make
the metrics of reproducing kernel Hilbert spaces invariant are
insufficient. In this paper, we show a necessary and suffi-
cient condition that makes the metrics of reproducing kernel
Hilbert spaces invariant.

Index Terms— kernel machine, reproducing kernel
Hilbert space, generalization ability, metric

1. INTRODUCTION

Learning based on kernel machines[1], represented by the
support vector machine[2] and the kernel ridge regression[3,
4], is widely known as a powerful tool for various fields of
information science such as pattern recognition, regression
estimation, and density estimation. In general, an appropri-
ate model selection is required in order to obtain a desirable
learning result by kernel machines. There exists two classes
of model selection. One is a selection of a model space to
which a learning result belongs. The other is a selection of a
learning machine in a fixed model space. The latter, such as
a selection of a regularization parameter under a fixed kernel,
is sufficiently investigated in terms of theoretical and practi-
cal senses (See [5, 6] for instance). On the other hand, the
former, that is, a selection of a kernel or its parameters, is not
discussed sufficiently in terms of theoretical sense although
practical algorithms for a selection of a kernel (or its param-
eters), such as a cross-validation, are revealed. The difficulty
of theoretical analyses for a selection of a kernel (or its pa-
rameters) lies on the fact that the metrics of two reproducing
kernel Hilbert spaces (RKHS)[7, 8] corresponding to two dif-
ferent kernels may differ in general. In order to avoid this dif-
ficulty, we analyzed the properties of a class of RKHS’s with
an invariant metric and proved that the kernel corresponding
to the smallest RKHS, including an unknown true function,

gives the optimal model in our previous paper[9]. Although
we have an example of a class of kernels, whose correspond-
ing RKHS’s have an invariant metric, such as the sinc ker-
nel (sampling function used in Shannon’s sampling theorem),
discussions for properties that make the metrics of RKHS’s
invariant are insufficient. In this paper, we show a necessary
and sufficient condition that makes the metrics of RKHS’s in-
variant.

2. MATHEMATICAL PRELIMINARIES FOR THE
THEORY OF REPRODUCING KERNEL HILBERT

SPACES

In this section, we prepare some mathematical tools con-
cerned with the theory of RKHS’s[7, 8].

Definition 1 [7] Let Rn be an n-dimensional real vector
space and let H be a class of functions defined on D ⊂ Rn,
forming a Hilbert space of real-valued functions. The func-
tion K(x, x̃), (x, x̃ ∈ D) is called a reproducing kernel of
H, if

1. For every fixed x̃ ∈ D, K(·, x̃) is a function belonging
to H.

2. For every fixed x̃ ∈ D and every fixed f ∈ H,

f(x̃) = 〈f(·),K(·, x̃)〉H, (1)

where 〈·, ·〉H denotes the inner product of the Hilbert
space H.

The Hilbert space that has a reproducing kernel K is
called a reproducing kernel Hilbert space (RKHS), denoted
by HK . The reproducing property Eq.(1) enables us to treat a
value of a function at a point in D while we can not deal with
a value of a function in a general Hilbert space such as L2.
Note that reproducing kernels are positive definite [7]:

N∑
i,j=1

cicjK(xi, xj) ≥ 0, (2)

for any integer N , c1, . . . , cN ∈ R, and x1, . . . ,xN ∈ D.
In addition, K(x, x̃) = K(x̃, x) for any x, x̃ ∈ D is



followed[7]. If a reproducing kernel K(x, x̃) exists, it
is unique[7]. Conversely, every positive definite function
K(x, x̃) has the unique corresponding RKHS [7].

Next, we introduce the Schatten product [10] that is a con-
venient tool to reveal the reproducing property of kernels.

Definition 2 [10] Let H1 and H2 be Hilbert spaces. The
Schatten product of g ∈ H2 and h ∈ H1 is defined by

(g ⊗ h)f = 〈f, h〉H1g, f ∈ H1. (3)

Note that (g ⊗ h) is a linear operator from H1 onto H2.
It is easy to show that the following relations hold for h, v ∈
H1, g, u ∈ H2.

(h ⊗ g)∗ = (g ⊗ h), (4)
(h ⊗ g)(u ⊗ v) = 〈u, g〉H2(h ⊗ v), (5)

where the superscript ∗ denotes the adjoint operator.

3. FORMULATION OF LEARNING PROBLEMS AND
KERNEL SPECIFIC GENERALIZATION ABILITY

Let {(yk, xk) | k ∈ {1, . . . , `}} be a given training data set
with an output value yk ∈ R and the corresponding input
vector xk ∈ Rn, satisfying

yk = f(xk) + nk, (6)

where f denotes the unknown true function and nk denotes a
zero-mean additive noise. In pattern recognition problems, yk

denotes a class label, and in regression or density estimation
problems, it denotes a value of the function f at a point xk

with additive noise. The aim of machine learning is to esti-
mate the unknown true function f by using the given training
data set and statistical properties of the noise.

In this paper, we assume that the unknown true function
f belongs to the RKHS HK corresponding to a certain kernel
function K. If f ∈ HK , then Eq.(6) is rewritten as

yk = 〈f(·),K(·, xk)〉HK + nk, (7)

on the basis of the reproducing property of kernels. Let y =
[y1, . . . , y`]′ and n = [n1, . . . , n`]′ with the superscript ′ de-
noting the transposition operator, then applying the Schatten
product to Eq.(7) yields

y =

(∑̀
k=1

[e(`)
k ⊗ K(·, xk)]

)
f(·) + n, (8)

where e
(`)
k denotes the k-th vector of the canonical basis of

R`. For a convenience of description, we write

AK =

(∑̀
k=1

[e(`)
k ⊗ K(·, xk)]

)
. (9)

The operator AK is a linear map from HK onto R` and Eq.(8)
can be rewritten as

y = AKf(·) + n, (10)

which represents the relationship between the unknown true
function f and an output vector y. The information of in-
put vectors is integrated in the operator AK . Therefore, a
machine learning problem can be interpreted as an inversion
problem of the linear equation Eq.(10)[11]. In general, an
estimated function f̂ is represented as

f̂(·) = Ly, (11)

where L denotes a learning operator specified by a learning
criterion such as that of the support vector machine and that
of the kernel ridge regression.

In general, a learning result by kernel machines is repre-
sented by a linear combination of K(·, xk), which means that
the learning result is an element in R(A∗

K) (the range space
of the linear operator A∗

K) since

f̂(·) = A∗
Kα (12)

=

(∑̀
k=1

[K(·, xk) ⊗ e
(`)
k ]

)
α (13)

=
∑̀
k=1

αkK(·, xk) (14)

holds, where α = [α1, . . . , α`]′ denotes an arbitrary vector in
R`. The point at issue of this paper is selection of a model
space, that is, the generalization ability of R(A∗

K) which is
independent from criteria of learning machines. Therefore,
we define the generalization ability of kernel machines speci-
fied by a kernel K as the distance between the unknown true
function f and R(A∗

K) written as

J(K, f) = ||f − PKf ||2HK
, (15)

where PK denotes the orthogonal projector onto R(A∗
K) in

HK and || · ||HK denotes the induced norm in HK . Note that
the orthogonality of PK is also defined by the metric in HK .
A selection of an element in R(A∗

K) as a learning result is
out of the scope of this paper since this selection depends on
learning criteria. We also ignore the observation noise in the
following contents since the noise does not affect Eq.(15).

4. OPTIMAL KERNEL IN A CLASS OF
REPRODUCING KERNEL HILBERT SPACES WITH

AN INVARIANT METRIC

In [9], we discussed a class of kernels whose corresponding
RKHS’s have an invariant metric and proved that the kernel
corresponding to the smallest RKHS including an unknown



true function gives the optimal model, that is, the best gener-
alization ability. In this section, we review the discussions of
[9].

Firstly, we give important theorems concerned with
nested RKHS’s shown in [7].

Theorem 1 [7] If Ki is the reproducing kernel of the class Fi

with the norm || · ||i, then K = K1 + K2 is the reproducing
kernel of the class F of all functions f = f1+f2 with fi ∈ Fi,
and with the norm defined by

||f ||2 = min
[
||f1||21 + ||f2||22

]
, (16)

the minimum taken for all the decompositions f = f1 + f2

with fi ∈ Fi.

Theorem 2 [7] If K is the reproducing kernel of the class F
with the norm || · ||, and if the linear class F1 ⊂ F forms a
Hilbert space with the norm || · ||1, such that ||f ||1 ≥ ||f || for
any f ∈ F1, then the class F1 possesses a reproducing kernel
K1 such that Kc = K − K1 is also a reproducing kernel.

Theorem 3 [7] If K and K1 are the reproducing kernels of
the classes of F and F1 with the norms || · ||, || · ||1, and if
K − K1 is a reproducing kernel, then F1 ⊂ F and ||f1||1 ≥
||f1|| for every f1 ∈ F1.

Let us consider nested RKHS’s HK1 and HK2 satisfying

HK1 ⊂ HK2 , (17)

specified by a class of kernels {Ki | i ∈ {1, 2}}. We assume
that HKi has an invariant metric for any i ∈ {1, 2}, that is,

〈f, g〉HK1
= 〈f, g〉HK2

(18)

for any f, g ∈ HK1 and

||f ||2HK1
= ||f ||2HK2

(19)

for any f ∈ HK1 . According to Theorem 2, there exists a
kernel Kc such that

K2 = K1 + Kc. (20)

The following theorem is the main result of [9].

Theorem 4 [9] For any input vectors {xk | k ∈ {1, . . . , `}},

||f − PK1f ||2HK2
≤ ||f − PK2f ||2HK2

(21)

holds for any f ∈ HK1 .

According to Theorem 4, given a class of kernels that
forms a nested class of RKHS’s with an invariant metric, it
is concluded that the kernel corresponding to the smallest
RKHS, including the unknown true function, gives the best
generalization ability among the given class of kernels. One

of typical examples of a class of kernels whose corresponding
RKHS’s have an invariant metric is the sinc kernel (sampling
function used in Shannon’s sampling theorem). As is well
known, the RKHS of the sinc kernel is a subspace of L2. This
theoretical result may play an important role in analyzing a
generalization ability of kernel machines. However, the result
in [9] does not contribute toward finding a class of kernels
whose corresponding RKHS’s have an invariant metric.

5. THEORETICAL ANALYSES FOR A CLASS OF
KERNELS WITH AN INVARIANT METRIC

In this section, we discuss properties of a class of kernels
whose corresponding RKHS’s have an invariant metric.

The following theorem is the main result of this paper.

Theorem 5 Let K1 and K2 = K1 + Kc be kernels whose
corresponding RKHS’s satisfy HK1 ⊂ HK2 . The following
three statements are equivalent each other.

1) For any f ∈ HK1 , ||f ||2HK1
= ||f ||2HK2

.

2) HK1 ∩HKc = {0}.

3) For any f1 ∈ HK1 and f2 ∈ HKc , 〈f1, f2〉HK2
= 0.

Proof
1) → 2)

From Theorem 1,

||f ||2HK2
= min

[
||f1||2HK1

+ ||f2||2HKc

]
, (22)

holds for any f ∈ HK2 with f = f1 + f2, (f1 ∈ HK1 , f2 ∈
HKc). It is trivial that Eq.(22) holds for any f ∈ HK1 ∩HKc

since HK1 ∩HKc ⊂ HK2 . Thus, for any f ∈ HK1 ∩HKc ,

||f ||2HK1
= ||f ||2HK2

= min
[
||f1||2HK1

+ ||f2||2HKc

]
≤ min

α

[
||αf ||2HK1

+ ||(1 − α)f ||2HKc

]
=

||f ||2HK1
||f ||2HKc

||f ||2HK1
+ ||f ||2HKc

.

On the other hand, it is easy to show that

||f ||2HK1
−

||f ||2HK1
||f ||2HKc

||f ||2HK1
+ ||f ||2HKc

≥ 0

holds for any f ∈ HK1 ∩HKc . Thus, it is concluded that

||f ||2HK1
=

||f ||2HK1
||f ||2HKc

||f ||2HK1
+ ||f ||2HKc

, (23)

which trivially yields ||f ||2HK1
= 0 for any f ∈ HK1 ∩HKc .

Therefore, HK1 ∩HKc = {0} is obtained.



2) → 1)
If HK1 ∩HKc = {0} holds, then Theorem 1 yields

||f ||2HK2
= ||f ||2HK1

(24)

since for any f ∈ HK1 , the decomposition

f = f1 + f2, (f1 = f ∈ HK1 , f2 = 0 ∈ HKc)

is unique.

2) → 3)
If HK1 ∩ HKc = {0} holds, then for any f ∈ HK2 , the

decomposition f = f1 + f2, (f1 ∈ HK1 , f2 ∈ HKc) is
unique. Thus, Theorem 1 yields

||f ||2HK2
= ||f1||2HK1

+ ||f2||2HKc . (25)

On the other hand, the uniqueness of the decomposition also
yields

||f ||2HK2
= ||f1 + f2||2HK2

= ||f1||2HK2
+ ||f2||2HK2

+ 2〈f1, f2〉HK2

= ||f1||2HK1
+ ||f2||2HKc + 2〈f1, f2〉HK2

. (26)

Thus, from Eqs.(25) and (26),

〈f1, f2〉HK2
= 0 (27)

is obtained.

3) → 2)
If 〈f1, f2〉HK2

= 0 for any f1 ∈ HK1 and f2 ∈ HKc , it
is trivial that HK1 ∩HKc = {0}. 2

According to Theorem 5, it is concluded that the invari-
ance of the metric of nested RKHS’s is identical to the dis-
jointness of the smaller RKHS and the added RKHS; and
these two properties are identical to the orthogonality of these
two RKHS’s. Therefore, we can identify a class of kernels
with an invariant metric by checking the disjointness or the
orthogonality of these two RKHS’s.

Combining Theorems 4 and 5 implies that if the unknown
target function f belongs to HK1 , then the kernel K1 + Kc

does not improve the (kernel specific) generalization ability
when HK1 and HKc are disjoint or orthogonal.

On the other hand, as mentioned in [9], the limitation of
the invariant metric is quite severe. Thus, analyses for a class
of RKHS’s, whose metrics are not always invariant, are one
of future works that should be resolved.

6. CONCLUSION

In this paper, we discussed a class of kernels that forms
a nested class of RKHS’s and proved that such a class of
RKHS’s has an invariant metric if and only if the smaller
RKHS and the added one are disjoint or orthogonal. Anal-
yses for a class of RKHS’s whose metrics are not always
invariant, are one of future works.
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