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ABSTRACT 
 
This paper describes the system submitted by Loquendo and 
Politecnico di Torino (LPT) for the 2009 NIST Language 
Recognition Evaluation. The system is a combination of classifiers 
based on two core acoustic models and on two core phone 
tokenizers. It exploits several state-of-the-art techniques that have 
been successfully applied in recent years both in speaker and in 
language recognition. 
We illustrate the incremental training procedure that has been 
devised to deal with broadcast data, we also describe the models, 
the classification techniques that have been used for this 
evaluation, and we comment on the performance of the system 
components alone and in combination. 
The system obtained using these techniques was among the best 
participants in this evaluation, obtaining on the 23 languages 
recognition task an actual DCFx100 of 1.6, 2.8, and 9.2 in the 30, 
10 and 3 sec conditions respectively. 
 

Index Terms— Spoken Language Recognition, LID, 
Feature compensation, Phone tokenizers 
 

1. INTRODUCTION 
 
A new challenge has been introduced in the 2009 NIST Language 
Recognition Evaluation (LRE) [1]: while all of the previous 
evaluation data consisted of Conversational Telephone Speech 
(CTS), two corpora of broadcast data consisting of Voice of 
America broadcasts in multiple languages have been distributed by 
NIST as additional data for this evaluation. Moreover, most of the 
23 target languages were new, and several target languages had no 
CTS samples. For each of the target languages that were included 
in these corpora, a labeled development set was created by LDC 
including about 80 segments of approximately 30 seconds 
duration, audited by the provider (LDC) and found to contain 
narrowband speech in the target language. 

Unfortunately this development corpus lacks the necessary intra-
language variability due to channel, gender and speaker 
differences, to train robust language models. Thus, in the NIST 
evaluation plan it was allowed to collect additional training data 
from any publicly available source. 

In this paper we first illustrate the incremental data selection and 
training procedure that has been devised to generate an appropriate 
development set for the narrowband speech in broadcast data. Then 
we describe the models that have been created, and the 
classification techniques that have been used for this evaluation. 
Finally, we comment on the performance of each system 
component and of its combination with the others, highlighting 

some still open problems such as the poor results obtained testing 
CTS data using models trained with narrowband speech collected 
from broadcast corpora. 
 

2. TRAINING AND DEVELOPMENT DATA 
 

While most of the CTS data were available from previous NIST 
evaluations, narrowband speech segments from broadcast data 
(broadcast for short in the following) had to be carefully selected 
to create the language models according to an incremental 
procedure starting from the Voice of America corpora provided by 
NIST for the 2009 evaluation, which contain speech in most of the 
23 target languages [1]. These corpora, referred to as VOA2 and 
VOA3 in the following, were supplied down-sampled to 8 KHz, in 
8-bit mu-law format. VOA3 programs have VOA supplied 
language labels, while those from VOA2 have associated a set of 
hypothesized language labels created by an automatic procedure 
[2] , which may be erroneous. 
 

2.1. Telephone development data 
 

The following CTS corpora were used for training: 
- The Callfriend corpus [3]. The conversations in this corpus were 

split into slices of approximately 150s. 
- The corpora provided by NIST for LRE03, LRE05 and LRE07. 
- The Russian through switched telephone network [3]. 
- The Cantonese and Portuguese data in the 22 Language OGI 

corpus [4]. 
 

2.2. Broadcast development data 
 

The development corpora were incrementally created to include as 
far as possible the intra-language variability due to channel, gender 
and speaker differences. To obtain a language recognition system 
with good generalization capabilities, we had to generate a 
development set - further split in training, calibration and test 
subsets - covering the mentioned variability with a sufficient 
amount of examples, and without speaker overlap among the 
subsets. The LRE2009 broadcast development data and the audited 
corpus provided by NIST did not satisfy the previous requirements 
for the following reasons: 
- The segments are often from the same speaker, as detected by our 

speaker recognizer [5], and confirmed by the “uniq_spkr” field 
of the audited data set to ‘False’. 

- After filtering the same speaker segments, a small number of 
segments remain for some languages. 

- The speaker genders within a language are not balanced. 
- Excluding “French”, the segments of all the other languages are 

either telephone or broadcast. 



- No audited data were available for Hindi, Russian, Spanish and 
Urdu on VOA3, only the automatic segmentation from Brno 
University (BUT) was given. 

- No segmentation was provided in the first release of the VOA3 
development data for Cantonese, Korean, Mandarin, and 
Vietnamese. 

For these 8 missing languages only the automatic language 
hypotheses provided by BUT were available for VOA2 data. 

Overall, we had only CTS data for 13 languages, only broadcast 
data for 21 languages, and data in both conditions for 11 of these 
languages. The “Persian” broadcast data in VOA2 and VOA3 were 
considered samples of the Farsi language.  
 

2.3. Additional checked development data 
 

For the 8 languages lacking audited broadcast, segments have been 
generated accessing the VOA site [6] looking for the original MP3 
files, also included – down-sampled – in the VOA3 disk. The goal 
was to collect about 300 broadcast segments per language, which 
were first processed by detecting narrowband fragments with a 
procedure similar to the one described in [2]. The candidates were 
checked to eliminate segments including music, bad channel 
distortions, and fragments of other languages that were evidently 
not corresponding to the file labels.  

The telephone and the audited broadcast data, plus the data of 
this additional set were evenly split into a train and a test set. Due 
to the scarcity of data we did not create a calibration set, 
performing simple score normalization by ZT-norm. 

The segments belonging to the same speaker were included in 
the same set. The speaker information was obtained by running our 
speaker recognizer on the broadcast segments. 

This set was used to train preliminary “bootstrap” models, one 
acoustic and one phonetic. The tests performed using these 
bootstrap models have highlighted the aforementioned problems 
related to the adequacy of the development data, and the necessity 
of further enriching the development sets. 
 

2.4. Additional not audited development data 
 

The samples necessary to enrich the development sets with new 
speakers and more segments were selected from the VOA3 and 
VOA2 data. For the VOA3 database we assume that the file label 
correctly identify the corresponding language. Among the VOA3 
data segmented by BUT, but not audited, we selected those 
allowing us to include new speakers in the train, calibration and 
test sets. The selection of speakers for each language was 
performed by means of the speaker recognizer. The audited 
segments were processed first, followed by the checked ones, and 
finally by the others in order to discard segments belonging to 
frequently appearing speakers. Whenever the best recognition 
score obtained by a segment was less than a predefined threshold, a 
new speaker model was added to the current set of speaker models.  

The selection of segments from the VOA2 database was more 
complex, and possibly error prone. Language recognition was 
performed on each segment using a system combining the 
bootstrap models. A segment was selected only if it had associated 
a score greater than a given rather high threshold, and if the 1-best 
language hypothesis of our system matched the 1-best hypothesis 
provided by the BUT system. The speaker selection procedure was 
applied also to these segments. The number of different speakers 
per language resulting from this procedure is about 45 on average.  

 

Table 1: Number of segments and total segment time selected from 
the Voice of America broadcast corpora 

 

Broadcast Corpora 
Set Time 

voa3_A voa2_A ftp_C voa3_U voa2_U ftp_U 

Train 40 h 529 116 316 1955 590 66 

Extended 
train 

48 h 114 22 65 2483 574 151 

Calibration 
and Test 

34 h 396 85 329 1866 449 45 

 
Table 1 shows the number of segments of broadcast data 

included in the final sets, and their total duration. In these tables 
the ftp label refers to the narrowband segments extracted from the 
original MP3 files available in the VOA site. Suffixes A, C and U 
refer to audited, checked, and additional unchecked segments 
respectively. 
 

3. LANGUAGE IDENTIFICATION SYSTEM 
 
The LPT system is the combination of classifiers based on two 
acoustic core models and two core phonetic tokenizers. 

The acoustic models are Gaussian Mixture Models obtained from 
a common Universal Background Model (UBM). The UBM and 
the language GMMs consist of mixtures of 2048 Gaussians. The 
observation vector includes the usual 56 parameters: the first 7 Mel 
frequency cepstral coefficients and their 7-1-3-7 Shifted Delta 
(SDC) coefficients. 

Two core acoustic models have been trained, both based on 
Gaussian Mixtures. These models will be referred to in the 
following as pushed GMMs and MMIE trained GMMs 
respectively. 
 

3.1.1. Pushed GMMs   
These discriminative models are obtained by a combination of 
GMMs through the information provided by Support Vector 
Machine (SVM) classifiers (GMM-SVM) according to the method 
proposed in [7]. A model per utterance is obtained by using 
Maximum A Posteriori (MAP) adaptation with a small relevance 
factor. Channel dependent but gender independent GMMs have 
been trained to avoid reducing the number of positive class 
examples. Training the channel dependent model of a target 
language is performed using as positive class the set of the channel 
dependent GMMs of that language, and all the GMMs of the 
competitor languages as negative classes (irrespective of channel). 

The total number of models that we use for scoring an unknown 
segment with this system is 34: the channel dependent models are 
22 (11 CTS and 11 broadcast) and the single channel models are 
12 (2 telephone and 10 broadcast models only).  
 
3.1.2. MMIE trained GMMs  

The second set of acoustic models is trained by Maximum Mutual 
Information Estimation (MMIE) [8]. 
Training is performed on frame blocks separated by silences, 
identified by a recognizer of broad phonetic classes. Gender 
dependent models were trained with 7 iterations, bootstrapped 
from gender independent pushed GMMs. The gender information 
was provided by labels, when available, or by our speaker 
recognizer trained to perform only gender detection. 

Since we use channel independent but gender dependent models, 
the number of scores per segment is 46, 23 per gender. 



3.1.3. Nuisance compensation 
For both models, the features domain compensation approach that 
was successful in the previous evaluation [9] was applied to reduce 
channel and speaker variability within the same language. We 
estimated a subspace that represents the distortions due to inter-
language variability, and compensate these distortions in the 
domain of the features using factor analysis [10]. The subspace of 
the intra-language variability is modeled by a low rank matrix U, 
of dimension 120 in these experiments. The U matrix and UBM 
that were trained for the LRE07 evaluation, with telephone data 
only, have been used to obtain the GMM bootstrap models. When 
the training set was enriched as illustrated in the Section 2, new 
matrices U and UBMs have been estimated. Each new U matrix is 
estimated by collecting the differences between GMM supervectors 
of each language. These differences have been performed 
separately for segments labeled as broadcast or telephone and 
among broadcast and telephone segments. 
 

3.2. Phone models 
 
The combination of acoustic with phonetic systems has been 
successful in the past evaluations [9][11]. In particular, in LRE07 
we exploited the availability of several languages in the Loquendo-
ASR recognizer [12] to implement a phonetic system based on the 
Parallel Phone tokenizer-SVM [13]. 
 

3.2.1.  1-best LID SVM 
The first phonetic system is based on the standard Loquendo-ASR 
decoder, which uses hybrid ANN-HMM models described in [14]. 
The decoder uses a phone-loop grammar with diphone transition 
constraints, and produces the 1-best phone strings for each 
segment. For this system, 12 different phone grammars have been 
used in parallel to collect the statistics of the n-gram phone 
occurrences in each segment for the following languages: French, 
German, Greek, Italian, Polish, Portuguese, Russian, Spanish, 
Swedish, Turkish, UK and US English. 

From each phone sequence produced by one of our phonetic 
transcribers on the same segment, the frequency of occurrence of 
each n-gram is computed and normalized by the square root of its 
frequency in the whole training set. By appending in a single 
vector all these normalized n-gram frequencies, we produce the so 
called Term Frequency Log-Likelihood Ratio (TFLLR) kernel [15] 
used in the SVM approach to language identification [7][9].  

Channel dependent linear SVM models of the target languages 
were trained. Two different TFLLR kernels have been used, the 
first one based on 3-grams, and the second one relying on pruned 
n-grams of order higher than 3 [8]. 
 

3.2.2 Lattice 3-grams 
The second phonetic system is based on the same features and 
phone-loop grammars, but uses slightly different ANN acoustic 
models and a search engine that produces phone lattices. The 
number of language transcribers for this system is 10 (a new 
language, Catalan, is included in the previous list of languages, 
whereas Greek, Portuguese and UK English were excluded). 
Again, channel dependent SVM models were trained computing 
the 3-gram probability using the expected counts from a lattice 
rather than the statistics from the 1-best sequence [16] [17]. 

 

6. SCORE NORMALIZATION AND COMBINATION  
 

The system produces its final scores by combining the scores of the 
5 sub-systems illustrated in Section 3. Since the dimension of 

Table 2: Performance of the 5 sub-system on the 30s development 
set (minDCFx100) and on the evaluation sets (actual DCFx100) 

 

SYSTEMS 
TEST 
ON Pushed 

GMMs 
MMIE 
GMMs 

3-grams 
Multi-
grams 

Lattice Fusion 

Development 1.48 1.70 1.09 1.12  1.06 0.86 

Evaluation 2.13 2.15 1.64 1.53 1.47 1.16 

Broadcast 2.03 2.01 1.63 1.51 1.39 1.08 
Telephone 3.09 3.47 2.25 2.26 2.49 2.06 

 
the score vectors for all the channel dependent sub-systems is 34, 
whereas it is 23+23 for the MMIE GMMs sub-system, the total 
number of scores is 182.  

The back-end training procedure follows the normalization and 
calibration procedure proposed in [11][18] and uses the FoCal 
multiclass toolkit [19].  

The final back-ends for the evaluation were trained on the set of 
scores obtained by the models on all the development and test data 
described in Section 2. Separate back-ends were trained for the 3, 
10, and 30 sec conditions using the development subsets of the 
corresponding durations. 

For each sub-system a set of channel dependent Gaussian 
back-ends has been trained. In particular, the space of the scores 
produced by each sub-system is transformed by means of LDA, 
and 34 Gaussians with common full covariance are trained by 
Maximum Likelihood Estimation. 

The output of each backend is a vector of 34 scores, 22 of 
them related to languages having both telephone and broadcast 
development data, 10 to languages having only broadcast data, and 
the remaining two – American and Indian English – having only 
telephone data. 

The raw score vectors are transformed into log likelihood 
vectors by applying the Gaussian back-ends, and the calibrated 
fusion of the 5 sub-systems is performed by means of multiclass 
Linear Logistic Regression (LLR), which finds the transformation 
parameters that optimize the multi-class Cllr objective function 
[18].  

The best log likelihood is selected for the 11 languages having 
both broadcast and telephone scores. 

These probabilities are transformed into the log likelihood ratio 
score llr=log P(segment|Language)/P(segment|⌐Language) using 
the a priori probabilities and costs given in the NIST LRE09 
evaluation plan [1], thus the decision threshold is simply 0. 
 

7. RESULTS 
 
The five subsystems and their fusion were assessed on a telephone 
LRE07 subset (restricted to the LRE09 target languages) and on 
the broadcast development data of Section 2. The development set 
was further split into 2 subsets, used for calibration and testing 
purposes. Both subsets were used for calibration and testing, 
exchanging their roles. 
The first row of Table 2 summarizes the performance of the 5 sub-
system on 30 sec segments of the LRE09 development data, in 
terms of minDCFx100 [1]. The second row gives the actual 
DCFx100 obtained on the evaluation set. The last two rows show 
the performance of the sub-systems on broadcast and telephone test 
data only. The results of the fusion of the sub-system are given in 
the last column.  



We can notice different behaviours of the subsystems on 
different subsets. For instance, MMIE GMMs and lattice models 
are better on broadcast data, whereas pushed GMMs and 1-best 3-
gram systems perform better on CTS. 

Another comparison of the sub-systems can be appreciated 
looking at the bar chart of Figure 1, where the minimum and actual 
DCF obtained on the 30 sec evaluation set are shown. The first 
three bars are related to the two acoustic subsystems and their 
fusion. The next four bars are related to the phonetic subsystems 
and their fusion. The gap between the acoustic and phonetic 
models is about 27%, far smaller then the 50% gap we had in the 
LRE07 evaluation. This improvement was probably due to the use 
of pushed models and of better MMIE models obtained starting 
from pushed models. The fusion of acoustic and phonetic models 
is rather effective, with a 17% of relative minimum DCF reduction. 
Looking at the last bar, which shows the performance of the sub-
system combination, a rather high (30% relative) calibration error, 
given by the difference between actual and minimum DCF, still 
remain.  

It is interesting noting that, whereas for the 30 sec test 
condition the best combination of 5/6 decoders almost reaches the 
accuracy obtained with 12 phone recognizers, for the 3 second 
condition using all the transcribers improves the minimum DCF 
from 0.127 to 0.116. 

Finally, the false alarm and the miss rates obtained using 
models trained with CTS only and CTS plus broadcast data show 
that these models perform quite well even when tested on 
broadcast segments. Unfortunately, the reverse is not true: 
broadcast models do not perform well on CTS data. This is valid 
for every language, and our results confirm the findings in [2]. 
 

8. CONCLUSIONS 
 

An incremental training procedure has been presented exploiting 
state-of-the art techniques in speaker and in language recognition 
to select and label narrowband segments within broadcast data. 
Although very good results have been obtained in the LRE09 
evaluation, using discriminative channel compensated acoustic 
models and several phonetic transcribers, our results confirm that 
still open problems remain in using models trained with easily 
available broadcast data for recognizing CTS data. Different 
speaking styles - characterized by good pronunciation - and high 
mismatch in channel characteristics seem to weaken the models 
against conversational speech. 
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Figure 1. Comparison of the systems in terms of the minimum and actual DCF for the LRE09 closed-set 30s tests

 


