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ABSTRACT

Increasing the generalization capability of Discriminative

Training (DT) of Hidden Markov Models (HMM) has re-

cently gained an increased interest within the speech recog-

nition field. In particular, achieving such increases with

only minor modifications to the existing DT method is of

significant practical importance. In this paper, we propose

a solution for increasing the generalization capability of a

widely-used training method – the Minimum Classification

Error (MCE) training of HMM – with limited changes to

its original framework. For this, we define boundary data

– obtained by applying a large steep parameter, and confu-

sion data – obtained by applying a small steep parameter

on the training samples, and then do a soft interpolation be-

tween these according to the number points of occupancies

of boundary data and the number points ratio between the

boundary and the confusion occupancies. The final HMM

parameters are then tuned in the same manner as in MCE

by using the interpolated boundary data. We show that the

proposed method achieves lower error rates than a standard

HMM training framework on a phoneme classification task

for the TIMIT speech corpus.

Index Terms— Hidden Markov Model, Speech Recogni-

tion, Minimum Classification Errors

1. INTRODUCTION

Discriminative training (DT) has been widely used in speech

recognition and it has proved to give significant improvement

over the traditional maximum likelihood estimation (MLE)

method in many speech recognition tasks. The most common

DT methods are minimum classification error (MCE) [1] [2]

and maximum mutual information (MMI) [3] [4] (or its vari-

ant minimum phone error (MPE) [5]) training. Both these DT

methods focus on reducing the empirical error in the training

set. However, optimal performance on the training set does

not guarantee the same on the test set – the well-known over-

fitting problem.

Recent research on discriminative training has focused

on improving the generalization capability of discriminative

training of Hidden Markov Models (HMM). For example,

large-margin methods used in conjuction with HMMs (such

as in [8], [9] and [7]) can reduce the test risks. However, these

represent a significant departure from the existing DT frame-

work. While large-margin methods that preserve the frame-

work do exist, such as the MCE parameter tuning approach

introduced in [6], they are affected by practical limitations.

The existing DT has been the focus of research for sev-

eral years, and its practical use has been proven by its suc-

cessful incorporation into many commercial speech recogni-

tion systems. Unfortunately, one of the more important draw-

backs of DT – the overfitting problem – seems to be addressed

only through solutions that are either a departure from the DT

framework, or have limited practical applicability. In this pa-

per, we propose a method that could increase the generaliza-

tion capability of DT, with only minor modifications to the

existing DT method, while maintaining its practical applica-

bility.

Interpolation between MLE and the discriminative objec-

tive functions has been applied in MMIE and MPE in a man-

ner that depends on the amount of data available for each

Gaussian (in the case of soft interpolation [5]) or has been

directly applied as hard interpolation [10]. In this paper, we

use I-smoothing to interpolate between two MCEs with differ-

ent steepness parameters, as opposed to interpolating between

MLE and MCE.

In the following section we briefly review the MLE and

MCE training. We describe our proposed I-smooth method

in Section 3 and show our experimental results in Section 4,

followed by a discussion in Section 5.

2. MLE AND MCE

In an HMM with N underlying states, a state sequence

S = (s1, s2, · · · , sT ) generated by the Markov chain can-

not be directly observed. Only observation sequences Y =
(y1, y2, · · · , yT ) resulted from the state sequence are visible,

according to the observation distribution defined by B =
{bi(yt) : 1 ≤ i ≤ N}, with bi(yt) = P (yt|st = i), which

often takes a Gaussian mixture form. The transition from

state i to state j is specified by an N × N matrix A = [Aij ]
with Aij = P (st = j|st−1 = i). π = [π1, π2, · · · , πN ] is

the initial state probability vector with πi = P (s1 = i). Λ is

the compact notation for the model parameters in an HMM

A, B and π. Maximum likelihood estimation (MLE) opti-



mizes A, B and π to maximize the probability of observation

sequences in the training set. By defining the a posteriori

probability variable

γt (i) = P (st = i|Λ, Y )

which is the probability of being in state i at time t, given the

observation sequence Y and the model Λ, the Baum-Welch

algorithm uses it to do soft alignment of the training utterance

and assigns the aligned speech to the hidden states to adjust

the model’s parameters in an iterative procedure.

MCE aims to minimize the number of smoothed empiri-

cal errors. Compared with MLE training, this discriminative

method makes use of a competing model’s additional infor-

mation to train a model. In particular, assume utterance Y
is aligned to the correct state sequence and to its competing

incorrect state sequences. Let gcor (Y,Λ) denote the score

on the correct model and gcom (Y,Λ) denote the score on its

competing model. We use d(Y ) to denote the misclassifica-

tion measure:

d (Y ) = −gcor (Y,Λ) + gcom (Y,Λ) .

For a specific Gaussian component with mean µ and the vari-

ance σ, let O denote the normalized speech y−µ
σ

assigned to

this component. As such, O2 will be
(

y−µ
σ

)2

. We may rewrite

the MCE reestimation formula from [1] as:

µmce = µ + ε (θmce

cor
(O) − θmce

com
(O))

σmce = σ · exp
(

ε
(

θmce

cor

(

O2 − 1
)

− θmce

com

(

O2 − 1
)))

where µmce is the new mean and σmce is the new variance. ǫ is

the learning rate; subscript cor and com indicate that the state

this component belongs to locates in correct and competing

state sequence respectively. θ(O) indicates that normalized

speech O is weighted by a function L. For the utterance Y ,

the weighting function is:

L(d(Y )) = lmce(d(Y ))(1 − lmce(d(Y )))

lmce(d(Y )) = 1/(1 + exp(−rd(Y )))

where r is the steepness parameter.

Let’s take a look at the L(d(Y )) whose curve is shown in

Fig. 1. If the steepness parameter r is very large, the curve

of L(d(Y )) is sharp and only has large values when d(Y ) is

close to 0. In this case, it will only select those utterances that

locate in the score boundary area in order to tune the model

parameters. As such, we classify the speech data selected by

L(d(Y )) as boundary data. In theory, only if the steepness pa-

rameter r is large enough, (ideally, close to +∞), lmce(d(Y ))
will accurately measure the misclassification number. In such

cases, however, boundary data may be too small. On the

other hand, if we choose a very small steepness parameter r,

say, close to 0, then L(d(Y )) is quite flat and selects a wider

range of data. At this time, lmce(d(Y )) cannot measure the
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Fig. 1. A weighting function

true misclassification number accurately. In reality, a moder-

ate value such as 1.0 can be used for the steepness parameter,

even though the boundary data accounts for a very small por-

tion of the whole speech sample. If the number of mixture

components is large, which is usually necessary to better fit

the training data, the boundary data assigned to each gaussian

may be very small and may not reflect the true data distribu-

tion.

Although the model parameter can be updated after each

utterance is feed in (online optimization), the method pro-

posed in this paper relies instead on the number of occupan-

cies of boundary data accumulated in each Gaussian compo-

nent, so the batch oriented optimization will be used. We need

to define φmce

cor
(O) and φmce

com
(O), which denote the number

of points of θmce

cor
(O) and θmce

com
(O) respectively. Batch opti-

mization has a similar performance to online optimization [2].

Beside the use of batch updates, we should also mention

the following implementation details for the baseline MCE:

(1) Average frame misclassification measure d(Y )/T is used

instead of d(Y ) to help the tuning process.

(2) We use a chopped sigmoid,

lmce(d(Y )/T ) = {
0, |d (Y ) /T | > Q
1/ (1 + exp (−rd(Y )/T )) , otherwise

where Q is a positive scalar. Removing correctly recognized

utterances with d values larger than Q does not cause a loss,

while cases with d smaller than −Q are regarded as outliers

and will not be used to tune the model parameters. Within

[−Q,Q] only up to eight best competitors are considered.

(3) Variable learning rates ξ/(φmce

cor
(O) − φmce

com
(O)) are

used when |(φmce

cor
(O) − φmce

com
(O))| is large, where ξ is a

small positive scalar. A fixed small learning rate is used when

|(φmce

cor
(O) − φmce

com
(O))| is less than a threshold.

3. I-SMOOTH METHOD ON MCE

I-smooth has been introduced into MMIE and MPE to im-

prove their generalization capability [5, 6]. In the context of



MMIE, I-smoothing means increasing the number of Gaus-

sian occupancies, but keeping invariant the average data val-

ues and average squared data values. In the context of MPE

training, it directly adds MLE occupancies to the numerator

occupancies and then use them in MPE training. Both are

a way of applying an interpolation between MLE and a dis-

criminative objective function, which depends on the amount

of data available for each Gaussian component.

We propose a different strategy to deal with the problem

of over-training in that the interpolation is applied between

the occupancies obtained in MCE with different steepness pa-

rameters rather than interpolation with MLE.

To describe the proposed method, we use misclassifica-

tion measure d(Y ) to define another data selection criteria:

lcon(d(Y )/T ) = {
0, |d (Y ) /T | > Q
1, otherwise

Compared to lmce(d(Y )/T ), only the chop on d(Y ) is applied

while the sigmoid is not being used. The selected data are

close to the boundary area and may cause some confusion

during training; as such, the selected speech data is referred

to as confusion data.

Assuming the confusion data is aligned to the correct

state sequence and its competing incorrect state sequences,

we may get another set of accumulators for the specific Gaus-

sian component: θcon

cor
, θcon

com
, φcon

cor
, and φcon

com
. They have same

the meaning as their corresponding expressions in MCE de-

scribed in the previous Section, except that they are used for

the confusion data.

Because the boundary data is obtained by applying the

weighting function L to the confusion data, they have some

inherent relations. To explain this kind of relation, we define

Bound OCC = φmce

cor
(O) + φmce

com
(O)

Conf OCC = φcon

cor
(O) + φcon

com
(O)

and their relation is as follows:

(1) In theory, the boundary data define a more accurate score

boundary, but because of the lack of availability, it may not

represent the true score boundary data distribution.

(2) On the other side, Conf OCC is much larger than

Bound OCC, however, the confusion data define a less

accurate score boundary.

If we could take advantage of the boundary data and the

confusion data and find an appropriate interpolation between

them, it is possible to better model the score boundary data

distribution and thus increase the generalization of the MCE.

To decide which Gaussian component need to be interpolated,

we make two assumptions:

(1) If a component has Bound OCC larger than a certain

threshold, we assume its assigned boundary data could reflect

the true boundary data distribution and does not need to be

interpolated.

(2) Assume Conf OCC is less affected by some random

factor and the ratio between Bound OCC and Conf OCC
should locate in a certain range for each Gaussian component.

We use Conf OCC as the reference and if the ratio is much

less than the bottom of the certain range, the boundary data

need to be interpolated with the confusion data.

To deal with the ratio value varying across different iter-

ations, individual ratios are normalized by the ratio of total

Bound OCC and Conf OCC of all Gaussian components.

We adopt a soft interpolation between the boundary and

the confusion occupancies and the smooth factor is:

ω = 1.0 − exp(−A × Boundary OCC − B × Ratio + C)

which is shown in Fig. 2.
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Then the accumulators for O and (O2 − 1) are smoothed:

θ
′

cor
− θ

′

com
= ω (θmce

cor
− θmce

com
)

+ (1 − ω)
θcon

cor
−θcon

com

φcon

cor
−φcon

com

(φmce

cor
− φmce

com
)

and the mean and the variance will be updated by θ
′

cor
and

θ
′

com
in a way same to that in MCE.

4. EXPERIMENTAL RESULTS

Although the TIMIT phone classification is a much easier task

than large-scale speech recognition, it is a useful benchmark

to test the effectiveness of new discriminative training meth-

ods without the influence of other factors such as language

models or noisy environments. We have carried out several

experiments to test our model on a speech phoneme classi-

fication task, i.e., assuming the segmentation time is known,

the task will recognize the unigram and context-independent

phones. Our training and testing sets are created with the ‘sx’

and ‘si’ training and testing sentences from TIMIT with 3696

and 192 core test sets, respectively. The standard phonetic

clustering [11] was used, resulting in 48 phone models and

further mapping to 39 phones during the test. We use HTK

as the baseline, in which the three-state left-to-right models



are adopted. We use 12 Mel Cepstral coefficients, plus the

energy parameter, and their first and second order difference

as the output feature. Thus the total dimension of the feature

vector is 39. These parameters are derived from 25 ms long

window frames with a 10 ms shift rate. The numbers of Gaus-

sian component for each state is 32. Each mixture component

covariance is modelled as a diagonal matrix; no parameter-

tying is applied to different states or mixture components.

0 10 20 30 40 50
75

76

77

78

79

Iterations

C
o

rr
ec

t 
P

er
ce

n
t(

T
S

)

I Smooth MCE

MCE

Fig. 3. MCE and I-MCE results on the test set

The correct percentages on the test set for both methods

after each iteration are shown in Figure 3. For the MCE, our

best result is 78.05%; and for the I-Smooth MCE, our best

result is 78.89%. The average gain over MCE across the iter-

ations is 0.56%.
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Fig. 4. MCE and I-MCE results on the training set

The I-Smooth MCE also give a higher correct percentage

than the MCE on the training set shown in Figure 4. However,

the average gain over MCE across the iterations is 0.46%,

which is less than that on the test set. This suggests that the

I-smooth method could increase the generalization capability

for MCE as well as help reduce the MCE empirical risk.

5. CONCLUSIONS AND FUTURE WORK

In this paper we propose a method for applying interpolation

between the boundary data and the confusion data, aimed to

alleviate the overfitting problem in MCE. In theory, Bound-

ary data define a more accurate score boundary, although it is

affected more by random factors. Confusion is a wider range

of boundary data that defines a rough score boundary while

being less affected by random factors. We interpolate the

boundary data with the confusion data when the number of

the boundary occupancy is small and when the number ratio

between them is small. The I-smooth MCE yields a 0.84% ab-

solute lower phone error rate than our best MCE result with-

out I-smoothing. The classification error rate of 21.11% is

the best result known to us for a standard HMM on this well-

known TIMIT phoneme classification task. Our future work

will investigate the application of this technique to a large vo-

cabulary speech recognition task.
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