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ABSTRACT

Artificial bandwidth extension (ABWE) of speech signals aims
to estimate wideband speech (50 Hz – 7 kHz) from narrowband sig-
nals (300 Hz – 3.4 kHz). Applying the source-filter model of speech,
many existing algorithms estimate vocal tract filter parameters in-
dependently of the source signal. However, many current meth-
ods for extending the narrowband voice source signal are limited
to straightforward signal processing techniques which are only ef-
fective for high-band estimation. This paper presents a method for
ABWE that employs novel data-driven modelling and an existing
spectral mirroring technique to estimate the wideband source signal
in both the high and low extension bands. A state-of-the-art Hidden
Markov Model-based estimator evaluates the temporal and spectral
envelopes in the missing frequency bands, with which the ABWE
speech signal is synthesized. Informal listening tests comparing two
existing source estimation techniques and two permutations of the
proposed approach show an improvement in the perceived band-
width of speech signals, in particular towards low frequencies. Sub-
jective tests on the same data show a preference for the proposed
techniques over the existing methods under test.

Index Terms— Speech enhancement, artificial bandwidth ex-
tension, voice source modelling

1. INTRODUCTION

The audio bandwidth of 300 Hz – 3.4 kHz which is used in today’s
fixed and mobile communication systems is comparable to that of
early-day analogue telephony. When digital standards were first es-
tablished, a common audio bandwidth facilitated interoperability be-
tween the analogue and digital domains. There has since been mo-
tivation within the telecommunications industry to introduce wide-
band telephony which can deliver high-quality speech with an au-
dio bandwidth of 50 Hz – 7 kHz to end-user terminals. However,
both narrowband and wideband systems are expected to co-exist for
a long time, requiring measures to ensure interoperability between
narrowband and wideband telephones.

This coexistence poses two main challenges: (a) efficient
transcoding between narrowband and wideband signals, and (b)
speech bandwidth extension to improve the quality of narrowband
speech received on wideband terminals. The former can been ad-
dressed by hierarchical coding where a standard narrowband bit-
stream is augmented with side information to extend the audio band-
width [1]. This approach is termed bandwidth extension with side
information. Transcoding is then straightforward as the side infor-
mation be either included or discarded as required [1]. In the latter

case, the so-called extension bands (50 – 300 Hz and 3.4 – 7 kHz) are
instead estimated from the narrowband speech only. This is referred
to as Artificial Bandwidth Extension (ABWE).

Most ABWE methods use the source-filter model of speech pro-
duction to estimate wideband spectral and temporal envelopes inde-
pendently of the source signal. Appropriate techniques to blindly
estimate these envelopes include codebook mapping [2], piece-wise
linear mapping [3] and Bayesian methods based on Gaussian Mix-
ture Models (GMMs) [4] or Hidden Markov Models (HMMs) [5].
Although the existing methods can already deliver improved audio
bandwith compared to narrowband speech, many ABWE algorithms
employ relatively crude methods to extend the source signal. For
ABWE towards high frequencies (3.4 – 7 kHz) there is evidence that
the quality of the enhanced speech mainly depends on a precise es-
timate of the spectral envelope while the source signal extension is
less important [6]. However, if low audio frequencies (50 – 300 Hz)
are also to be recovered from narrowband speech, existing source ex-
tension methods usually fail to produce a signal of sufficient quality,
in particular for voiced speech segments. Typical artefacts include a
roughness caused by low-frequency random noise that is modulated
by the speech amplitude, or a buzziness caused by incorrectly shaped
or incorrectly placed glottal pulses, depending upon the method em-
ployed. Such artefacts render the bandwidth-extended speech unnat-
ural and can mask any perceived improvement in speech quality. For
this reason, existing ABWE approaches often avoid lowband exten-
sion altogether.

This paper presents a novel method for the extension of narrow-
band source signals based on an existing spectral mirroring tech-
nique and Data-Driven Voice Source Modelling (DDVSM) [7], em-
ploying GMMs to establish an explicit mapping between narrow-
band source features and the wideband source signal. Using an ex-
isting ABWE framework [5] that applies HMM-based Bayesian es-
timation of spectral and temporal envelopes [1], missing frequency
content in both high and low bands is synthesized and added to the
narrowband signal to form an estimated wideband signal. Informal
listening tests show that this approach achieves a particular improve-
ment in the lowband speech signal. Subjective testing demonstrates
that a noticeable improvement in the speech bandwidth is perceived
at the expense of introducing some unwanted artefacts.

The remainder of this paper is organized as follows. In Sec-
tion 2, existing ABWE source methods are reviewed, followed by a
description of the proposed data-driven voice source technique. Sec-
tion 3 introduces the estimation technique to estimate temporal and
spectral envelopes. The system is evaluated in Section 4 and conclu-
sions are drawn in Section 5.
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Fig. 1. System diagram for training of the proposed excitation source signal estimator.

2. VOICE SOURCE ESTIMATION

2.1. Existing Source Estimation Techniques

Several methods exist for the artificial bandwidth extension of the
high band source signal. Spectral approaches involve translating,
mirroring (folding), or modulating the estimated narrowband linear
prediction residual, enb(n) [5, 8]. Techniques that involve filtering
and modulating random noise are also employed. Synthetic glottal
pulses inserted in synchrony with the long-term predictor in narrow-
band CODECs can be used in addition to shaped noise [1].

Low band extension techniques include the generation of pitch-
synchronous sinusoids [9] or impulse trains [10] and nonlinear pro-
cessing of enb(n) to generate low frequency harmonics with a suit-
able temporal envelope [11]. Such techniques are generally limited
to voiced speech as unvoiced speech contains little energy below 300
Hz. Artefacts associated with lowband extension include buzzing
from poorly placed or poorly shaped glottal pulses and roughness
caused by incorrectly shaping additive noise.

Existing techniques make little or no use of voice source mod-
elling. The remainder of this paper describes an entirely model-
based approach for the bandwidth extension of voiced speech.

2.2. Model-Based Source Extension

2.2.1. Introduction to Data-Driven Voice Source Modelling

Data-Driven Voice Source Modelling (DDVSM) [7] is a technique
for classifying voice source signals. One such implementation uses
a large database of training data to estimate class distributions in the
MFCC feature space, from which a set of corresponding ‘prototype’
time-domain waveforms are derived. An unknown voice source can
then be decomposed into a weighted sum of prototypes. The tech-
nique has been modified to use a mixture of wideband and narrow-
band training data for the purposes of ABWE.

2.2.2. Model Training

Consider a frame of wideband speech, swb(n), with z-transform
Swb(z) such that

Swb(z) = Uwb(z)V wb(z)R(z) = Uwb
R (z)V (z), (1)

where Uwb(z) is glottal volume velocity and R(z) is a model of lip
radiation. The linearity of the decomposition permits the first and
last terms to be encompassed into a single ‘source’ signal, Uwb

R (z),
that excites the vocal tract filter to produce speech. A p-th order
linear predictor yields an all-pole estimate of the vocal tract filter,

V̂ wb(z) � V wb(z). Inverse-filtering Swb(z) with V̂ wb(z) esti-
mates the source signal,

Swb(z)

V̂ wb(z)
� Uwb

R (z) � uwb
R (n). (2)

Let snb(n) be the corresponding narrowband speech signal, with
voice source unb

R (n), obtained with a plain-old telephone system
(POTS) filter whose passband lies in 300 Hz – 3.4 kHz.

The APLAWD database [12], which contains wideband speech
signals and contemporaneous Electroglottogram (EGG) recordings,
forms the training corpus for the voice source model training. The
SIGMA algorithm [13] detects glottal closure instants (GCIs) from
the EGG signal, which are then refined by finding the maximum gra-
dient in uwb

R (n) that lies ±0.5 ms of each SIGMA-derived GCI. This
corrects for small deviations in the EGG-to-speech time alignment.
The estimated source signals are divided into scale- and amplitude-
normalized overlapping two-cycle glottal-synchronous frames so
that classification is based only on waveform shape,

uwb
i =�L′

L κuwb
R (n),

unb
i =�L′

L κunb
R (n), n ∈ {nc

i , . . . , n
c
i+2 − 1}, (3)

where �L′
L denotes a resampling of factor L′

L
, L = nc

i+2 − nc
i + 1,

L′ = 2tmaxfs, nc
i is the GCI at cycle i, tmax is a maximum glottal

period of 0.02 ms, fs is sampling frequency (Hz) and κ is a gain
factor to normalize RMS energy. Cycle pairs form the rows of (N ×
L′) data matrices where N is the total number of cycle pairs,

Uwb = [uwb
1 ,uwb

2 , . . . ,uwb
N ]T,

Unb = [unb
1 ,unb

2 , . . . ,unb
N ]T. (4)

A (N × C) feature matrix of C = 12 MFCCs is derived for each
narrowband frame,

Cnb = [cnb
1 , cnb

2 , . . . , cnb
N ]T, (5)

from which the EM algorithm [14] derives M = 16 diagonal co-
variance Gaussian mixtures. The probability that feature cnb

i is a
member of mixture component ωm is stored as an (N × M) prob-
ability matrix with elements p(ωnb

m |cnb
i ). For each mixture, the cor-

responding class centroids, μnb
m , diagonal covariance matrices, Σnb

m

and mixture weights, p(ωnb
m ), are calculated. The prototype signals

are derived as a weighted average of wideband time-domain wave-
forms, uwb

i , stored in a (M × L′) matrix,

Ūwb
nb = [ūwb

nb,1, ū
wb
nb,2, . . . , ū

wb
nb,M ]T = PT

nbU
wb. (6)

We employ a convention for U and P whereby the superscript refers
to the bandwidth of the time-domain waveforms and the subscript to
that of the feature set. The system is depicted in Fig. 1.

2.2.3. Wideband Voice Source Estimation

Wideband voice source estimation is similar to model training. A
narrowband test utterance is inverse-filtered and segmented into am-
plitude and scale-normalized 2-cycle frames, unb

i , with correspond-
ing MFCCs, cnb

i . The DYPSA algorithm [15] provides estimation
of GCIs for segmentation. The decomposition for frame i is

γi = [γ1,i, γ2,i, . . . , γM,i] = [p(ωnb
1 |cnb

i ), . . . , p(ωnb
M |unb

i )]. (7)
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Fig. 2. BWE synthesis.

We define a set Mi ⊆ Mall, Mall = {1, . . . , M}. Mi con-
tains the class indices that produce the highest likelihood. A wide-
band cycle of the voice source signal can then be resynthesized from
the prototypes, Ūwb

nb , with the decomposition terms,

ûwb
i =

X

m∈Mi

γm,i

“
�β

α κūwb
nb,m

”
, (8)

where �β
α resamples ūm to length (nc

i+2 − nc
i ) for cycle i and κ

is a gain factor to reproduce the same energy as the source cycle.
An approximation to the full uR(n) is synthesized by windowing ûi

with a Hamming window, wi, shifting to centre on nc
i and summing.

The proposed approach is suitable for voiced speech only; un-
voiced excitation can be produced with a spectral technique such as
mirroring. A voiced/unvoiced/silence detector [16] is employed.

3. TEMPORAL & SPECTRAL ENVELOPE ESTIMATION

To complete the ABWE scheme, the wideband signal envelope has
to be estimated and restored. Several envelope parameterizations
have been proposed for ABWE. Mostly, an autoregressive model is
assumed and the envelope is restored using an LPC synthesis fil-
ter with estimated coefficients. However, LPC synthesis of artificial
source signals does not necessarily regenerate the correct temporal
characteristics. Therefore, in this work, a signal parameterization is
employed in terms of spectral and temporal energy envelopes [1],
whereby low and high extension bands are treated separately. For
the high extension band, the spectral envelope is parameterized in
terms of 10 logarithmic subband energies, Fhb, (375 Hz subbands)
for each 10 ms frame. The temporal envelope, Thb, provides 5 log-
arithmic subframe energies of the extension band signal for each
10 ms frame (2 ms subframes). For the low extension band, only
the temporal envelope, Tlb, of the low-pass signal is used.

The parameter vectors Fhb, Thb and Tlb are estimated with
separate HMM-based MMSE estimators [5] The estimators require
a narrowband feature vector, xnb

f , for each frame. Here, xnb
f is com-

posed of the narrowband MFCCs, of the zero crossing rate and of the
narrowband temporal envelope Tnb. The actual estimator configu-
rations are listed in Table. 1. Based on the estimated parameter set,
the extension band signals ŝhb(n) and ŝlb(n) can be synthesised by
shaping the envelopes of the source signals, ûhb(n) and ûlb(n), re-
spectively. This signal shaping is performed in a two-step approach:
a filterbank equalizer restores the spectral envelope (high band only)
and the temporal envelope is corrected via gain manipulation, cf. [1].
Finally, the signals ŝhb(n) and ŝlb(n) are combined with snb(n) to
give the bandwidth extended output ŝwb(n). The estimation / resyn-
thesis procedure is shown in Fig. 2.

4. EVALUATION

Four voice source estimation techniques were considered for subjec-
tive testing: i) spectral mirroring, ii) synthetic glottal pulse located
at the GCIs during voiced + spectral mirroring during unvoiced, iii)
DDVSM during voiced + spectral mirroring during unvoiced and iv)
DDVSM for LB + spectral mirroring for HB. The ABWE techniques
were applied to narrowband speech, quantized with an ITU-T G.711
μ-law audio CODEC [17].

An ITU-T P.800 [18] subjective test was devised, including two
additional hidden references in the form of wideband and quantized
narrowband speech. The sample set consisted of 3 female and 3
male talkers, each speaking 5 pairs of phonetically-balanced sen-
tences. The 20 subjects each listened to the 30 samples in random
order, with one of the 6 methods randomly applied to each sentence.
Processed sentences were normalized to a level of -30 dB with re-
spect to the overload point defined in ITU-T P.56 [19], then presented
with Sennheiser HD650 headphones in a listening room environ-
ment. Subjects were asked to rate i) ‘Foreground’, describing speech
quality only, ii) ‘Background’, describing artefact tolerance, and iii)
‘Overall’ impression. An Absolute Category Rating (ACR) scale
was used for i) and iii) and a Degradation Category Scale (DCR) for
ii), rated 1 – 5 in 0.5 increments. Five examples were given with ap-
proximate ratings prior to taking the test. A set of ‘control’ samples,
rated by a team of expert listeners, were used to derive a quadratic
calibration curve for each subject to standardize their responses.

The results show that all ABWE techniques improve the per-
ceived foreground score at the expense of reducing the background
score. Of the techniques under test, a clear preference was shown
for the combined DDVSM LB + spectral mirroring HB, confirming
the assertion that DDVSM is particularly effective for lowband ex-
tension and that lowband ABWE is especially sensitive to the source
signal employed. The preference of the best ABWE technique com-
pared with narrowband is still relatively small. These results contrast
with previous findings where highband-only ABWE is preferred to
narrowband, suggesting that lowband artefacts are particularly detri-
mental to perceived quality.

Table 1. Envelope Estimator Configurations

Param. Param. # of Codebook # of
Vect. Dim. Features Size Gaussians.

Fhb 10 19 128 8
Thb 5 19 128 8
Tlb 5 19 64 8
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Fig. 3. Mean Opinion Scores for ABWE algorithms.

Two artefacts regularly occurred in the test set. The first was a
‘beating’ in the low extension band, caused by erroneous GCI de-
tections, resulting in a low frequency excitation signal that was not
pitch-synchronous with the narrowband signal. The second was a
‘hissing’ in the high extension band, caused by incorrect estimation
of the upper spectral envelope. Improved GCI detection, coupled
with fine-tuning of temporal/spectral envelope training and estima-
tion, have resulted in significantly reduced artefacts since the initial
submission of this paper.

5. CONCLUSIONS

An artificial bandwidth extension (ABWE) technique has been pro-
posed that employs spectral mirroring and Data-Driven Voice Source
Modelling (DDVSM) to estimate a wideband source signal from nar-
rowband speech. Used in conjunction with a state-of-the-art frame-
work that estimates the temporal and spectral envelopes of the ex-
tension bands, an ABWE system has been proposed that is novel in
its explicit use of voice source modelling and the estimation both the
low (50 – 300 Hz) the high (3.4 – 7 kHz) extension bands.

Informal listening tests reveal that the proposed technique is par-
ticularly effective in the lowband. Formal subjective tests demon-
strate that an improvement in the perceived bandwidth of speech can
be achieved at the expense of increasing background artefacts. It
further reveals that, compared with the other methods under test, the
use of DDVSM in the lowband with spectral mirroring in the high-
band is preferred over narrowband speech, as it provides the greatest
perceived ABWE with the least number of unwanted artefacts.
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