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ABSTRACT

We present a new and computationally efficient scheme for
classifying signals into a fixed number of known classes. We
model classes as subspaces in which the corresponding data is
well represented by a dictionary of features. In order to ensure
low misclassification, the subspaces should be incoherent so
that features of a given class cannot represent efficiently sig-
nals from another. We propose a simple iterative strategy to
learn dictionaries which are are the same time good for ap-
proximating within a class and also discriminant. Preliminary
tests on a standard face images database show competitive re-
sults.

Index Terms— classification, feature selection, subspace
learning, Grassmannian manifolds, dictionary learning, alter-
nate projections

1. INTRODUCTION

A powerful and general approach to the problem of classify-
ing signals into classes is to first select informative features
and then work out the classification in feature space. The role
of the features is usually two-fold: they should reduce the
dimensionality of the problem and they should make it pos-
sible to use very simple classification schemes, like nearest
neighbour or nearest subspace [1, 2]. However it is often im-
possible to construct features a priori and one must then resort
to learning them from training data.

Assume we haveN already labelled training signalsy ∈
R

d belonging toc classes, where each classi containsni

elements, i.e.
∑

i ni = N . We denote thej-th signal in
classi as yj

i , i = 1 . . . c, j = 1 . . . ni. For each classi
we collect all its training signals as columns in thed × ni

class matrixYi, i.e. Yi = (y1

i . . . yni

i ), and these class ma-
trices in turn are combined into a bigd × N data matrix
Y = (Y1 . . . Yc) = (y1

1
. . . yn1

1
. . . y1

c . . . ync
c ). Given a new

signal ynew the goal is to decide which class it belongs to
with the help of the already labelled training signals.

The scope of this paper is to recast the classification prob-
lem into finding a set of subspaces that each model a class
where classification is achieved by finding the closest sub-
space to a test signal in an euclidean sense. Note that idea that

each class should have its own representative system, learned
from the training data can already be found in [8]. There
frames or dictionaries for texture classification are learned,
such that each provides a sparse representation for its texture
class. The new texture then gets the label of the texture frame
providing the sparsest representation. In [9], the same basic
idea is used but the learning is guided by the principle that the
dictionaries should also be discriminant, while in [10] both
learning principles are combined, i.e. the dictionaries should
be discriminant and approximative.

The main difficulty, and the contribution of this paper, is
thus to learn an optimal set of subspaces from training data in
a computationally efficient way. We provide results using the
examples of classifying face images into classes correspond-
ing to identities, an example for which ample comparative
data is available [4, 5, 6].

2. CLASS MODEL

To every classi, we will assign a set ofsi vectorsf j
i , j =

1 . . . si, which are collected as columns in the matrixFi =
(f1

i . . . fsi

i ). Every elementyi in classi can thus be written as
a combination of these class specific features with coefficients
xi and some residualri, orthogonal to the feature span,

yi = Fixi + ri, rk
i ⊥ sp(Fi). (1)

To each class is thus assigned a subspace spanned by the fea-
ture vectors. In nearest subspace classification, the features
of a test signal are projected onto all class subspaces and the
subspace/class that carries the most energy will be selected.
Naturally, the features of a class should thus represent very
well all the elements of that class (the projection has high en-
ergy), while at the same time they shouldn’t represent well the
elements of any other class. Suppose for simplicity that the
feature sets form orthonormal systems, i.e.F ⋆

i Fi = Is, they
should thus satisfy :

‖F ⋆
j yi‖2

‖F ⋆
i yi‖2

< 1, ∀j 6= i. (2)

Let us justify qualitatively the choice of the2-norm above.
To choose a good p-norm for the classification, we bound the



norm ratio we need to be small :

‖F ⋆
j yi‖p

‖F ⋆
i yi‖p

6
‖F ⋆

j Fixi‖p

‖xi‖p

+
‖F ⋆

j ri‖p

‖xi‖p

. (3)

Since in most cases we do not have information about the dis-
tribution of the coefficientsxi, the first term on the right hand
side can be as big as‖F ⋆

j Fi‖p,p = max‖x‖p=1 ‖F
⋆
j Fi‖p.

Taking into account the orthogonality of the features in the
matricesFi, we see that forp = 2 this term can only be equal
to one if two classes overlap, meaning that there is a signal
whose features in its own class can be represented by features
in a different class. Forp = 1/∞, however, the correspond-
ing term is equal to the maximum absolute column/row sum
of theF ⋆

j Fi and it can be easily seen that this can be larger
than one, even if for no signal the features in its own class
can be fully represented by features in a different class. Sim-
ilar results hold for all otherp 6= 2, thus makingp = 2 the
best choice in this case. Observe also thatp = 2 corresponds
to measuring the energy captured by the features of a class.
Thus if the features are well chosen also the second term in
inequality (3) can be expected to be small.

To summarize, we see that choosingp = 2 puts the fol-
lowing incoherence constraint on the feature spaces. No sig-
nal that can be constructed from features in one class should
be well representable by features in another class. This con-
straint is the strongest we have encountered so far, which is
only natural since we do not have an assumption on coeffi-
cient distribution.

3. FINDING FEATURE/SENSING MATRICES

From the analysis in the last section we can derive two types
of conditions that the collection of features or subspacesFi

needs to satisfy. The first type describes how features from
different classes should interact, i.e. the interplay measured
in the appropriate matrix norm should be small, and the sec-
ond type how the features should interact with the training
data, i.e. the ratio of the response without to within class
should be small. The problem with both kinds of conditions
is they are not linear and difficult to handle. For instance cal-
culating the(2, 2)-norm is equivalent to finding the largest
singular value and can already be too computationally inten-
sive depending on the dimensionality of the problem. We will
therefore simplify the problem. Instead of requiring explicitly
that the interplay between features from different classesis
small, hereby avoiding to investigate what small means quan-
titatively, we use the intuition that this should come as free
side effect from regulating the interaction with the training
data, and simply ask thatF is a collection of orthonormal
systemsFi each of ranks. What we would actually like to
do about the interaction of the features with the training data
is to minimise the ratio between the response of the training
data without to within class. However, a constraint involv-
ing the ratio is not linear and very hard to handle. We will

therefore split it into two constraints that guarantee thatthe
ratio is small if they are fulfilled. The first constraint is that
the response within class is equal to a constantβ which we
choose to be the maximally achievable value given the rank
of the orthonormal systems. The second constraint is that the
response without class is smaller than a constantµ, whose de-
pendence ons, d is more complicated and will be discussed
later. Define the two setsFs andFµ as

Fs := {F = (F1, . . . , Fc) : F ⋆
i Fi = Is}

Fµ := {F : ‖F ⋆
i yk

i ‖2 = β,

‖F ⋆
j yk

i ‖2 6 µ, ∀k, i, j 6= i}, (4)

then our problems could be summarised as finding a matrix in
the intersection of the two sets, i.e.F ∈ Fs ∩ Fµ. However,
since this intersection might be empty, we should rather look
for a pair of matrices, each belonging to one set, with minimal
distance to each other measured in some matrix norm, eg. the
Frobenius norm, denoted by‖ · ‖2

1,

min ‖Fs − Fµ‖2 s.t.Fs ∈ Fs, Fµ ∈ Fµ. (5)

One line of attack is to use an alternate projection method, i.e.
we fix a maximal number of iterations, an initialisation forF 0

s

and then in each iterative step do:

• find a matrixF k
µ ∈ argminF∈Fµ

‖F k−1

s − F‖2

• check if‖F k−1

s − F k
µ ‖2 is smaller than the distance of

any previous pair and if yes storeF k−1

s

• find a matrixF k
s ∈ argminF∈Fs

‖F k
µ − F‖2

• check if‖F k
s −F k

µ ‖2 is smaller than the distance of any
previous pair and if yes storeF k

s

If both sets are convex, the outlined algorithm is known as
Projection onto Convex Sets (POCS) and guaranteed to con-
verge. Non convexity of possibly both sets, as is the case here,
results in much more complex behaviour. Instead of converg-
ing, the algorithm just creates a sequence(F k

µ , F k
s ) with at

least one accumulation point, see [3] for more details on this
algorithm and its properties.

As mentioned above we chooseβ to be the maximally
achievable value. An orthonormal system ofs feature vectors
can maximally take out all the energy of a signal,

‖F ⋆
i yi‖2 6 ‖yi‖2. (6)

As the signals are assumed to have unit norm, this energy is
at most one and we setβ = 1. From the discussion in the
last section we see that the parameterµ reflects the incoher-
ence we require between features from different classes. If

1We use this notation instead of the more common variant‖ · ‖F to avoid
confusion.



we haved > c · s, it is theoretically possible to havec sub-
spaces of dimensions which are mutually orthogonal to each
other, andµ could be zero. As soon as the above inequal-
ity is reversed, because for instance the actual dimension of
the span of all features, i.e.rank(F ), is smaller thand, not
all subspaces corresponding to the different classes can beor-
thogonal but will have to overlap. This overlap or coherence
is measured by‖F ⋆

j Fi‖2,2 and from theory about Grassman-
nian manifolds, see [3], we know that the maximal coherence
between two ofc subspaces of dimensions embedded in the
spaceRd can be lower bounded by

max
i6=j

‖F ⋆
j Fi‖

2

2,2 >
s · c − d

d(c − 1)
. (7)

The problem with settingµ as above is that we are not con-
trolling the interaction between the sets of features directly
but only indirectly over the training data. There the worst case
might not be assumed and soµ as above would be too large.
Therefore we use the above bound as an indication of order
of magnitude and, when testing our scheme on real data, vary
the parameterµ. Lastly for the initialisation for each class
we choose the orthogonal system that maximises the energy
taken from this class opposed to the energy taken from the
other classes, i.e.

F 0

s,i = argmin
F ⋆

i
Fi=Is

‖F ⋆
i Yi‖

2

2
−

∑

j 6=i

‖F ⋆
i Yj‖

2

2
. (8)

This problem can be easily solved, by considering the rewrit-
ten version of the function to minimise,

min
F ⋆

i
Fi=Is

trace
(

F ⋆
i (YiY

⋆
i −

∑

j 6=i

YjY
⋆
j )Fi

)

. (9)

If UDU⋆ is an eigenvalue decomposition of the symmetric
(Hermitian) matrixYiY

⋆
i −

∑

j 6=i YjY
⋆
j , then the minimum is

attained forF 0

s,i consisting of thes eigenvectors correspond-
ing to thes largest eigenvalues.

4. TESTING

We tested our technique on the popular Yale B face image
database [7] containing several instances of the same individ-
ual, with varying expressions, pose and lighting conditions.
We used the 2414 frontal face images, about 64 images taken
under varying illumination conditions for each of the 38 peo-
ple. For the test we randomly split the set of images per per-
son into an equal number of training and test images, using
one more training than test image in case of an odd number of
images per class. We then ran our classification scheme with
the number of features per class varying from 2 to 5 and with
the values ofµ running only from 0 to 0.05. For comparison
we ran Fisher’s LDA with 37 and 30 discriminative axes in
combination with the nearest neighbour classifier. This pro-
cedure was repeated 19 times and the mean of all 20 runs was
computed.

The results of our method can be found in Table 1. While
Fisher’s LDA on average missclassified 23.30± 6.42 images
(success rate of 98.07± 0.53%) using 37 discriminant axes
and 231.55± 23.48 images (success rate 80.78± 1.95%)
using 30 discriminant axes, our method in the best case only
misclassified 13.60± 4.22 images (success rate 98.87±
0.35%). In general it outperformed Fisher’s LDA for a wide
range of values forµ ands.
Comparison to theℓ1-minimisation scheme in [4] is harder,
as it seems that there only a single run was used. However,
their best success rate of 98.26%, achieved at the same time
as Fisher’s LDA with 30 discriminant axes achieved 87.57%
(the maximal rate for Fisher’s LDA we encountered in 20 runs
was 84.73%), is still below our best average rate of 98.87%.

To illustrate the results, we show in Figure 1 what happens
when a training image is projected on the features of its own
class and any other subject’s class. As expected the projec-
tions on features of their own class nicely filter out common
traits like eyes, mouths and noses, but on top of that the fea-
tures of the first subject capture the very distinctive birthmark
on his right cheek. The projections on the wrong class on the
other hand are not only much weaker (note the difference in
scale) but also less clear. Two overlapping sets of features
seems to appear at the same time, the ones that belong to the
subject in the image and the ones that the projection is trying
to filter out.
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Fig. 1. Original image (a) projected onto the span of features
from its own class (b), projected onto the span of features of
the wrong class (c).

Summarising the results, we can say that our method out-
performs a classic scheme like Fisher’s LDA. In comparison



s\µ 0 0.01 0.02 0.03 0.04 0.05
2 19.80± 5.74 20.30± 5.80 22.25± 7.20 23.85± 6.81 25.25± 6.66 26.25± 6.61
3 14.15± 4.37 13.60± 4.22 13.85± 3.73 15.85± 5.25 16.40± 4.78 17.55± 6.00
4 15.75± 3.82 14.05± 3.49 13.95± 3.55 15.35± 3.95 16.45± 4.10 16.95± 4.30
5 15.70± 4.78 15.00± 4.91 14.45± 4.30 15.30± 3.34 17.60± 4.65 17.65± 4.55

Table 1. Mean± standard deviation of misclassified images on the Extended Yale B database for varying valuess andµ.

to the state-of-the-artℓ1-minimisation scheme in [4] it per-
forms quite similarly. However it has one big advantage over
the ℓ1-minimisation scheme, which is its low computational
complexity. Not taking the calculation of the feature matrices
into account, as this is part of the pre-processing, basically all
that has to be done to classify a new data vector is to multi-
ply it with the feature matrix and calculate some statisticson
the resulting vector. Theℓ1 minimisation method on the other
hand requires on top of extracting the features the solutionof
a convex optimisation problem

min ‖z‖1 s.t.‖fnew − Fz‖2 6 ε, (10)

whereF in this case is thedf ×N matrix containing the fea-
tures of all the training data. For comparison in [4] the authors
state that the classification of one image takes a few seconds
on a typical 3 GHz Pc. At the same time for classifying 1205
images of size192 × 168, using our method with 4 feature
dimensions per class, MATLAB takes less than half a minute
on a Dual 1.8Ghz PowerPC G5, which is less than 25ms per
image.

5. CONCLUSION

We have presented a classification scheme based on a model
of incoherent subspaces, each one associated to one class, and
a model on how the elements in a class are represented in this
subspace. From a more practical viewpoint we have devel-
oped an algorithm to calculate these subspaces, i.e. the fea-
ture matrices, and shown that the scheme gives promising re-
sults on standard database, as compared with a state of the art
method like theℓ1-minimisation scheme in [4]. An interest-
ing direction for future research would be to try to reduce the
computational cost in the training phase ifd andN are very
large. A possibility would be to first take random samples
of the training data, which reduce their dimension but very
likely preserve the geometrical structure, as explained in[4].
Alternatively to reduce the dimension ofF one can apply our
scheme on classical features, like Eigen or Laplace features,
instead of directly on the raw training data.
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