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ABSTRACT each class should have its own representative systemekarn

We present a new and computationally efficient scheme f from the training data can already be found in [8]. There
I pif ina sianals into a fix 5n mb ryf Kknown cl W rames or dictionaries for texture classification are ledtn
classilying signais Into a fixed NUMEr ot KNown classes. W, it each provides a sparse representation for ite¢ext

model classes as subspa(_:es inwhich the correspondlng;dat%fass_ The new texture then gets the label of the texturegfram
well represented by a dictionary of features. In order taiems

low misclassification, the subspaces should be incohecent roviding the sparsest representation. In [9], the sami bas
) P o dea is used but the learning is guided by the principle tiat t
that features of a given class cannot represent efficieifly s

. i . dictionaries should also be discriminant, while in [10] tbot
nals from another. We propose a simple iterative strategy t%arning principles are combined, i.e. the dictionariesu
learn dictionaries which are are the same time good for a6 discriminant and a roximativ,e
proximating within a class and also discriminant. Preliamin bp :

tests on a standard face images database show competitive re The main difficulty, and the contribution of this paper, is
sults 9 P {us to learn an optimal set of subspaces from training data i

a computationally efficient way. We provide results using th

Index Terms— classification, feature selection, subspaceexamples of classifying face images into classes correspon
learning, Grassmannian manifolds, dictionary learniftgra ing to identities, an example for which ample comparative
nate projections data is available [4, 5, 6].

1. INTRODUCTION 2. CLASS MODEL

A powerful and general approach to the problem of classifyT0 every class, we will assign a set of; vectorsf/, j =
ing signals into classes is to first select informative feegu 1. .. s:, which are collected as columns in the matfix =
and then work out the classification in feature space. Tree rol(f - - - f;*). Every elemeny; in classi can thus be written as
of the features is usually two-fold: they should reduce thed combination of these class specific features with coefffisie
dimensionality of the problem and they should make it poszi and some residuaj, orthogonal to the feature span,
sible to use very simple classification schemes, like neares

neighbour or nearest subspace [1, 2]. However it is often im- Yi = iz + i,
possible to construct features a priori and one must themtres
to learning them from training data.

Assume we havéV already labelled training signalse
R? belonging toc classes, where each clasgontainsn;
elements, i.e.> . n, = N. We denote thg-th signal in
classi asy/, i = 1...¢,j = 1...n;. For each class
we collect all its training signals as columns in tie< n;

k1L osp(Fy). 1)

To each class is thus assigned a subspace spanned by the fea-
ture vectors. In nearest subspace classification, therésatu

of a test signal are projected onto all class subspaces and th
subspace/class that carries the most energy will be sdlecte
Naturally, the features of a class should thus represent ver
well all the elements of that class (the projection has higth e

_ X H by ergy), while at the same time they shouldn’t represent well t
class matrixY;, i.e. ¥; = (y; ...y;"), and these class ma- glements of any other class. Suppose for simplicity that the

trices in turn are corpbined into a big x N data matrix  featyre sets form orthonormal systems, i#.F; = I,, they
" .

Y = ..., = (y_1 Y ye). G|\_/en aNew  ghayid thus satisfy :

signal y,.., the goal is to decide which class it belongs to

with the help of the already labelled training signals. 1F7yill2 o
The scope of this paper is to recast the classification prob- m <1,vj#i. @)
lem into finding a set of subspaces that each model a class
where classification is achieved by finding the closest sub- Let us justify qualitatively the choice of ttienorm above.
space to a test signal in an euclidean sense. Note that idea tffo choose a good p-norm for the classification, we bound the



norm ratio we need to be small : therefore split it into two constraints that guarantee that
" " " ratio is small if they are fulfilled. The first constraint isath
HFj yi”l) < HFj Fiwin HFj Ti”p th ithi | B It wthich
L < ) (3) e response within class is equal to a constamthich we
15 yillp il il choose to be the maximally achievable value given the rank

Since in most cases we do not have information about the di€f the orthonormal systems. The second constraint is tkat th

tribution of the coefficients;;, the first term on the right hand "€SPonse without class is smaller than a congtanhose de-

side can be as big a8 Fill,, = max|. — |F}Fil|, pendence on, d is more complicated and will be discussed
J ’ Zip= J ) .

Taking into account the orthogonality of the features in thd@ter- Define the two set§; and7), as

matricesF;, we see that fop = 2 this term can only be equal N

to one if two classes overlap, meaning that there is a signal Form{F =, Fo) FTF =1}

whose features in its own class can be represented by feature Fu={F: ||Fry¥|s =3,

in a dlffer_ent class. Fop = 1/oo, however, the correspond- |\nyf|\2 <, ki, j 2 i), (4)

ing term is equal to the maximum absolute column/row sum

of the I F; and it can be easily seen that this can be largethen our problems could be summarised as finding a matrix in

than one, even if for no signal the features in its own clasgne intersection of the two sets, i.E. € F, N F,,. However,

can be fully represented by features in a different clags- Si since this intersection might be empty, we should rathek loo

ilar results hold for all othep # 2, thus makingp = 2 the  for a pair of matrices, each belonging to one set, with mitima

best choice in this case. Observe also that 2 corresponds  distance to each other measured in some matrix norm, eg. the
to measuring the energy captured by the features of a clagsyobenius norm, denoted iy [|22,

Thus if the features are well chosen also the second term in

inequality (3) can be expected to be small. min ||Fy — F,,||2 s.t. Fs € Fs, F), € F. (5)
To summarize, we see that choosjng= 2 puts the fol-

lowing incoherence constraint on the feature spaces. No sigPne line of attack is to use an alternate projection methed, i

nal that can be constructed from features in one class shoutee fix a maximal number of iterations, an initialisation g

be well representable by features in another class. This coand then in each iterative step do:

straint is the strongest we have encountered so far, which is

only natural since we do not have an assumption on coeffi-

cient distribution.

e find a matrixF" e argminge r, |FE=1 — F||2

e check if| Fi~1 — F¥||2 is smaller than the distance of

any previous pair and if yes storef~1
3. FINDING FEATURE/SENSING MATRICES

o _ _ e find a matrixF¥* € argmingc 5 _||F} — F||2
From the analysis in the last section we can derive two types )
of conditions that the collection of features or subspaes e checkif|| F* —Fl’j||2 is smaller than the distance of any
needs to satisfy. The first type describes how features from previous pair and if yes store’
different classes should interact, i.e. the interplay mess
in the appropriate matrix norm should be small, and the sedf both sets are convex, the outlined algorithm is known as
ond type how the features should interact with the trainind®rojection onto Convex Sets (POCS) and guaranteed to con-
data, i.e. the ratio of the response without to within clasyerge. Non convexity of possibly both sets, as is the cass her
should be small. The problem with both kinds of conditionsresults in much more complex behaviour. Instead of converg-
is they are not linear and difficult to handle. For instande ca ing, the algorithm just creates a sequelig®, F¥) with at
culating the(2, 2)-norm is equivalent to finding the largest least one accumulation point, see [3] for more details o thi
singular value and can already be too computationally intenalgorithm and its properties.
sive depending on the dimensionality of the problem. We will ~ As mentioned above we choogeto be the maximally
therefore simplify the problem. Instead of requiring egjply ~ achievable value. An orthonormal systemsdéature vectors
that the interplay between features from different classes can maximally take out all the energy of a signal,
small, hereby avoiding to investigate what small means quan
titatively, we use the intuition that this should come afre 1E7 villz2 < [lysll2- (6)
side effect from regulating the interaction with the traii
data, and simply ask thdf is a collection of orthonormal
systemsF; each of ranks. What we would actually like to
do about the interaction of the features with the trainingrda
is to minimise the ratio between the response of the trainin
data without to within class. However, a constraint involv- 1We use this notation instead of the more common vatjarit- to avoid
ing the ratio is not linear and very hard to handle. We will confusion.

As the signals are assumed to have unit norm, this energy is
at most one and we sét = 1. From the discussion in the
last section we see that the parameteeflects the incoher-
Snce we require between features from different classes. If




we haved > c- s, it is theoretically possible to havesub- The results of our method can be found in Table 1. While
spaces of dimensioniwhich are mutually orthogonal to each Fisher’'s LDA on average missclassified 23:8®.42 images
other, andu could be zero. As soon as the above inequal{success rate of 98.0% 0.53%) using 37 discriminant axes
ity is reversed, because for instance the actual dimendion and 231.55+ 23.48 images (success rate 80#8L.95%)

the span of all features, i.e.ank(F), is smaller thani, not  using 30 discriminant axes, our method in the best case only
all subspaces corresponding to the different classes can be misclassified 13.6Gt 4.22 images (success rate 98.&7
thogonal but will have to overlap. This overlap or coherenc.35%). In general it outperformed Fisher’s LDA for a wide
is measured by F> F;||2 » and from theory about Grassman- range of values fon ands.

nian manifolds, see [3], we know that the maximal coherenc€omparison to thé;-minimisation scheme in [4] is harder,
between two of: subspaces of dimensierembedded in the as it seems that there only a single run was used. However,
spaceR? can be lower bounded by their best success rate of 98.26%, achieved at the same time
s c—d as Fisher's LDA with 30 discriminant axes achieved 87.57%
—_—. (7)  (the maximal rate for Fisher's LDA we encountered in 20 runs
d(c - 1) was 84.73%), is still below our best average rate of 98.87%.
The problem with setting. as above is that we are not con-  Toillustrate the results, we show in Figure 1 what happens
trolling the interaction between the sets of features tliyec when a training image is projected on the features of its own
but only indirectly over the training data. There the woeste class and any other subject’s class. As expected the projec-
might not be assumed and gas above would be too large. tions on features of their own class nicely filter out common
Therefore we use the above bound as an indication of orderaits like eyes, mouths and noses, but on top of that the fea-
of magnitude and, when testing our scheme on real data, vatyres of the first subject capture the very distinctive hingrk

the parameter.. Lastly for the initialisation for each class on his right cheek. The projections on the wrong class on the
we choose the orthogonal system that maximises the energyher hand are not only much weaker (note the difference in
taken from this class opposed to the energy taken from thgcale) but also less clear. Two overlapping sets of features

2
max | Fy Fillz,, >

other classes, i.e. seems to appear at the same time, the ones that belong to the
. subject in the image and the ones that the projection isgryin
Foy = argmin [ Y3 =3 IFYills @) ofier out,
¢ TP J#i

This problem can be easily solved, by considering the rewrit
ten version of the function to minimise,

F,-*I?z-igls trace (Fi* (Viy7” - Z YJY;)FI) @)

J#i

If UDU™* is an eigenvalue decomposition of the symmetric
(Hermitian) matrixy; Y;* — Z#i Y;Y [, then the minimumiis
attained forFSO,i consisting of thes eigenvectors correspond-
ing to thes largest eigenvalues.

4. TESTING

We tested our technique on the popular Yale B face image o
database [7] containing several instances of the samédidiv = =
ual, with varying expressions, pose and lighting condition *|
We used the 2414 frontal face images, about 64 images taker”
under varying illumination conditions for each of the 38 peo
ple. For the test we randomly split the set of images per per-_ &% oy e B o]
son into an equal number of training and test images, using = s o & e N
one more training than test image in case of an odd number of (b) (c)

images per class. We then ran our classification scheme with o )
the number of features per class varying from 2 to 5 and wit/i9- 1. Original image (a) projected onto the span of features

the values of: running only from 0 to 0.05. For comparison from its own class (b), projected onto the span of features of
we ran Fisher's LDA with 37 and 30 discriminative axes in the wrong class (c).

combination with the nearest neighbour classifier. This pro

cedure was repeated 19 times and the mean of all 20 runs was Summarising the results, we can say that our method out-
computed. performs a classic scheme like Fisher’'s LDA. In comparison



s\p 0 0.01 0.02 0.03 0.04 0.05
2 ]19.80+5.74 20.30+5.80 22.25+7.20 23.85£6.81 25.25-6.66 26.25-6.61
3 | 14.15+4.37 13.60+4.22 13.85£3.73 15.85£525 16.40:4.78 17.55+:6.00
4 | 1575+ 3.82 14.05-3.49 13.95-3.55 1535395 16.45-4.10 16.95+4.30
5 | 1570+ 4.78 15.00£4.91 1445430 15.30+3.34 17.60£4.65 17.65+-4.55

Table 1. Mean+ standard deviation of misclassified images on the Extendésl ¥ database for varying valuesind.

to the state-of-the-amt;-minimisation scheme in [4] it per-
forms quite similarly. However it has one big advantage over
the ¢;-minimisation scheme, which is its low computational 2]
complexity. Not taking the calculation of the feature nmees
into account, as this is part of the pre-processing, bdgiatl
that has to be done to classify a new data vector is to multi-
ply it with the feature matrix and calculate some statistins
the resulting vector. Th& minimisation method on the other
hand requires on top of extracting the features the solaion

a convex optimisation problem
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5. CONCLUSION

We have presented a classification scheme based on a model
of incoherent subspaces, each one associated to one ddss, a
a model on how the elements in a class are represented in thi[s8]
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