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ABSTRACT

Image spam is an email spam that embeds text content into
graphical images to bypass traditional spam filters. The ma-
jority of previous approaches focus on filtering image spam
from client side. To effectively detect the attack activities of
the spammers and fast trace back the spam sources, it is also
essential to employ cluster analysis to comprehensively filter
the image emails on the server side. In this paper, we present
a nonnegative sparsity induced similarity measure for cluster
analysis of spam images. This similarity measure is based on
an assumption that a spam image should be represented well
by the nonnegative linear combination of a small number of
spam images in the same cluster. It is due to the observa-
tion that spammers generate large number of varieties from a
single image source with different image processing and ma-
nipulation techniques. Experiments on a spam image dataset
collected from our department email server demonstrated the
advantages of the proposed approach.

Index Terms— Nonnegative sparse representation, Im-
age spam filtering, Cluster analysis

1. INTRODUCTION
The success of text document classification techniques on
email spam detection [1, 2, 3] has driven spammers to ex-
plore new variations of spam emails, among which image
spam email has become a new popular weapon. To generate
image spam emails, the spammers embed the text content into
an image, on which they impose various image processing
techniques such as those utilized in CAPTCHA (Completely
Automated Public Turing Test to Telll Computers and Hu-
mans Apart). Although large amount of end users receive
different image spams, these images are substantially visual
variations from a small number of spam image sources. By
appending texts containing randomly generated words based
on normal statistics with the image spam, the spam images
can successfully bypass text based spam filters.

Some early work such as SpamAssassin [4] have tried to
pull out the embedded texts in the spam images by using OCR
(Optical Character Recognition), and then apply text based
spam filtering techniques. However, highly accurate OCR
may be by itself a more difficult problem than spam image

classification, especially when the spammers are performing
adversarial manipulation of the image content. This is prob-
ably the reason why many recent work has been focusing on
directly classifying email image attachments as either spam
or non-spam, such as the different image spam hunters [5, 6]
and fast image spam classifiers [7]. A supervised or semi-
supervised learning machinery is usually leveraged in these
image spam classifiers.

Not withstanding their demonstrated success, these direct
classification schemes focus on classifying each individual
image attachment. It lacks, however, more global analysis
of the corpus of image attachments on the sever. Unsuper-
vised clustering analysis of the image corpus may provide
more information on the source of spam images. For exam-
ple, if all the email users on this server received image attach-
ments from the same cluster, then it is highly likely that they
are spam images. Further analysis can then be performed to
identify the source senders and block them in the future.

Nevertheless, to effectively cluster images, it is essential
to have a good visual similarity measure for different im-
ages. Previous work has designed different image signatures
from diverse image features to define either L1 or L2 norm,
weighted or un-weighted, in the feature space as the similar-
ity measures [8, 9]. However, they are not able to adapt to
the manifold structure of the image features, as pointed out
by Cheng et al [10].

We propose a nonnegative sparsity induced similarity
measure and apply it for the task of cluster analysis of spam
images. The basic proposition we make is that an image
should be able to be effectively reconstructed by a small
number of other images from the same cluster. We design a
quadratic program to calculate such nonnegative sparse rep-
resentation and a similarity measure is further derived from
such a representation. Our experimental results further vali-
date the efficacy of the proposed nonnegative sparsity induced
similarity measure for clustering analysis.

In Sec. 2, we will present the system flow chart of an unsu-
pervised image spam detection system by performing cluster
analysis. Then we discuss the proposed nonnegative sparsity
induced similarity measure in Sec. 3. Experiments are dis-
cussed and analyzed in Sec. 4. We finally conclude in Sec. 5.
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Fig. 1. Flow chart of a server side image spam detection sys-
tem by cluster analysis.

2. UNSUPERVISED IMAGE SPAM DETECTION

Figure 1 presents the system flow chart of a server side im-
age spam detection system by cluster analysis. Given a set of
image attachments extracted from the email server, we cluster
them by leveraging the nonnegative sparsity induced similar-
ity measure, which we shall discuss in more detail in Sec-
tion 3. Since spam images are usually send in bulk, bigger
clusters are highly likely to be spam images. They are then
sent to either the administrator or an automatic program for
further analysis. For example, we can further identify the
spam sources so that we can block them from the server side
in a very early stage. We shall remark here that this is hard to
achieve if we only do client-side spam filtering.

With server side blocking, we hope that the spam emails
received by end client users be minimized. Those smaller
clusters are most often normal images and so that they will
be passed to the client users in the end. There may be false
negatives, but they are in small bulk and less annoying to the
end users. Moreover, the client side spam image filters could
be able to further capture them.

3. NONNEGATIVE SPARSITY INDUCED
SIMILARITY MEASURE FOR CLUSTERING

Assume X = [x1,x2, . . . ,xN ] is the feature vectors of the N
images we obtained from a batch of emails in an email server,
where ∀i,xi ∈ Rn. Our nonnegative sparsity induced simi-
larity is based on a basic assumption. That is, any data sample
or feature vector in the corpus can be well represented by the
nonnegative linear combination of a small number samples
from the same cluster. Nevertheless, for xi, we do not know
beforehand which samples are in the same cluster, not to men-
tion which small set of samples would reconstruct it well.

To successfully identify the potential small sample set to
reconstruct xi, let Xi = [x1, . . . ,xi−1,xi+1, . . . ,xN ], we

propose to solve the following optimization problems,

mina
1
2
‖xi −Xi · a‖2 +

β

2
‖a‖2 + λ

n∑
j=1

aj (1)

s.t. ∀j = 1 . . . N, ai > 0 (2)

where a = [a1, . . . , ai−1, ai+1, . . . , aN ]T , and β is a small
constant to weight the ridge regression cost to penalize a with
large L2 norm1. Since we constrain each ai to be nonneg-
ative, f(a) =

∑n
j=1 aj is equivalent to an L1 norm Lasso

penalty [11]. Therefore, solving the above constrained opti-
mization problem would naturally result in a to be a sparse
vector, i.e., a vector with only a small number of non-zero en-
tries. λ is the control parameter of the Lasso penalty, which
directly determines how sparse a will be.

After easy mathematic derivation, it is straightforward
to observe that the above formulation Equation 1 can be
re-arranged as

mina aT (XT X + βI)a + (λ1− xT
i X)T a (3)

s.t. ∀j = 1 . . . N, ai > 0, (4)

where I is the identity matrix and 1 is a vector with all el-
ements being 1. This is a standard quadratic program with
linear constraints and can be solved by standard active set
method. We employ the MINQ [12] Matlab library in our
implementation to solve it. Notice that the difference of our
formulation compared with those of Benaroya [13] is the ad-
ditional ridge regression term, which is to regularize the solu-
tion of linear regression to be more stable.

Naturally, after we have identified the sparse vector a, we
define the similarity of xi to all the other data samples to be

wij =
aj∑N

k=1,k 6=i ak

. (5)

Since the wij induced above may not be symmetric, i.e.,
wij 6= wji, our final similarity measure sij forces it to be
symmetric by setting sij = wij+wji

2 . After we have success-
fully identified the similarity matrix S = [sij ], we may run
any spectral clustering algorithm [14] or a simple hierarchical
agglomerative clustering algorithm to clustering the data.

We remark here that our nonnegative sparsity induced
similarity measure is partly motivated by the work of Cheng
et al. [10]. The most obvious difference is that we introduce
the nonnegative constraints into the formulation, while their
formulation allows the reconstruction coefficients to be nega-
tive, which may not be desirable since it is in conflict with one
of the two assumptions the authors made, i.e., a sample can
be linearly reconstructed from a small set of samples from the
same cluster. The reason is that the negative coefficients have
to be forcefully set to zero in their algorithm when defining
the final distance measure. Similar to [10], one may also

1We fix β = 0.01 in our experiments.
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Fig. 2. The number of images in each of the 37 clusters.

pick up the k nearest neighbors of xi to form Xi instead of
using all the other n − 1 data samples, to save the expensive
computational cost.2

4. EXPERIMENTS

4.1. Data Set

In our previous work [6], we collected an image dataset
which contains 1190 spam images and 1760 normal images.
Please refer to [6] for details on how we collected the dataset.
Among the 1190 spam images, we labeled 37 clusters which
covers 756 of the spam images. The number of images in a
cluster could be as high as 160, and as low as just 1, as shown
in Figure2. These 37 clusters of spam images composed the
evaluation data set in our experiments.

4.2. Feature Representation
Following Gao et al [6], we adopt an effective set of 23 image
statistics to be the visual representation for each image. It
includes 16 color statistic features, 1 texture statistics, 4 shape
statistics, and 2 appearance statistics. Due to page limite, we
refer to [6] for details of these statistic features.

4.3. Cluster Analysis
We compare the proposed similarity measure with two other
competitive measures. The first one is the sparsity induced
similarity measure without posing the nonnegative constraint,
i.e., we simply remove the nonnegative constraints in Equa-
tion 2, set β = 0 and change

∑
j aj to

∑
j |aj | in Equation 1.

Then the problem becomes a standard Lasso regression prob-
lem 3. This similarity measure is firstly proposed in [10]4.
The other one is a baseline similarity measure which is in-
duced from the Euclidean distance by applying a Gaussian

2We fix k = 100 in our experiments.
3We solve it with Gaussian-Seidel method using the Matlab code pro-

vided at http://people.cs.ubc.ca/ schmidtm/Software/lasso.html
4Cheng et al. [10] cast it in a slightly different optimization problem, but

it should essentially achieve very similar results.

radial basis function (RBF). For each of the similarity mea-
sures, we build the similarity graph matrix and use a spectral
cluster algorithm [14] to generate the clustering results.

4.3.1. Evaluation Criterion
Since we have the ground truth cluster labels of all the data,
we use two criteria to evaluate the performance of all the clus-
tering results [15]. The first criterion is the average clustering
accuracy CAC, which is defined as

CAC =
1
n

n∑
i=1

δ(m(cli) − li) (6)

where n is the total number of data points, δ(.) is the Dirac-
Delta function, cli and li are the cluster id and the labeled
cluster id of data point i, respectively, and map(·) is the best
map of cli to the ground truth cluster id, which can be opti-
mally resolved by the Kuhn-Munkres algorithm.

The second evaluation criterion we adopt is the normal-
ized mutual information [15] between the cluster results C ′

and the ground truth clusters C, which is defined as

µMI =
MI(C,C ′)

max(H(C),H(C ′))
(7)

where H(·) represents the entropy of the cluster set and
MI(C,C ′) is the mutual information between the two clus-
ter sets, i.e.

MI(C,C ′) =
∑

ci∈C,c′
j∈C′

p(ci, c
′
j) log

p(ci, c
′
j)

p(ci)p(c′j)
. (8)

It is easy to figure out that µMI ∈ [0, 1], with µMI = 0 if
the two cluster sets are independent and µMI = 1 if the two
cluster sets are identical.

4.4. Comparison Results
We summarize the cluster performance using three different
distance measures in Table 1. We name the results of three
different similarity measures as NonNegSparse (our proposed
one), Sparse (Cheng et al. [10]), and Euclidean (Gaussian
RBF baseline). Since the final step of the spectral clustering
algorithm [14] is running a k-means, each run of the spectral
cluster will result in slightly different clustering results due to
different initialization of the k-means iterations. Therefore,
we run the spectral clustering 500 times for each case and the
results reported in the table are the mean value plus/minus the
standard deviation over all the runs.

As we can clearly observe, the proposed nonnegative spar-
sity induced similarity measure achieves the best clustering
performance with CAC = 0.635 and µMI = 0.734, with
a parameter setting λ = 0.1. This significantly improves
the best results achieved by Cheng et al. [10], which obtains
CAC = 0.559 and µMI = 0.671 with λ = 0.7. Never-
theless, both algorithms lead the baseline Gaussian RBF sim-
ilarity by a significant margin (CAC = 0.485 and µMI =



NonNegSparse Sparse Euclidean
CAC 0.635± 0.006 0.559± 0.032 0.485± 0.019
µMI 0.734± 0.005 0.671± 0.006 0.471± 0.025

λ = 0.1 λ = 0.7 –

Table 1. The clustering performance of three different simi-
larity measures.
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Fig. 3. The changes of cluster performance criteria w.r.t. the
λ (in log scale).

0.471), as shown in the table. The standard deviations of the
performance quantities of the proposed approach also seem
to be smaller than those of the competition methods, which
is an indication that the proposed similarity measure is more
preferable since the clustering results from it are less sensitive
to the initialization of k-means after spectral embedding.

We shall remark here that the weight factor λ in Equa-
tion 1 has an impact on both the nonnegative sparsity induced
similarity measure and the sparsity induced similarity mea-
sure. Therefore, we run the above cluster analysis with differ-
ent settings of λ for both algorithms, and plot the changes of
the cluster performance criteria w.r.t. λ (in log scale) in Fig-
ure 3. It clearly demonstrates the better performance of the
proposed nonnegative sparsity induced similarity measure.

We notice that the two evaluation criteria, CAC and
µMI , are not always strictly tied with one another. That is,
when CAC achieves the optimal value, the µMI may not
achieve the best simultaneously, and vice versa. We regard
CAC as a more direct criterion, so we pick up the working
parameter λ based on it in Table 1.

5. CONCLUSION AND FUTURE WORK
In this paper, we present a nonnegative sparsity induced sim-
ilarity measure and apply it for the task of cluster analysis of
spam images by server side. Our experimental comparisons
present favorable performance when compared with previous
sparsity induced similarity measure without nonnegative con-
straints and Euclidean distance similarity metric by applying
a Gaussian radial basis function. Our future work may in-

clude further analysis of the proposed similarity measure in
other signal processing tasks.
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