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ABSTRACT In order to preprocess the signal, a filtering is often ap-
plied and the resulting filtered samples are used as training

labels given an observed sequence of samples. A naive w xamples for learning. Such an approach poses the issue of

is to filter the signal in order to reduce the noise and to apply e filter choice, which is oftenly based on prior knowledge

a classification algorithm on the filtered samples. We preposOn the information brought by the signals. Moreover, mea-

in this paper to jointly learn the filter with the classifieate tsrl]Jreldslglgnalsdandtgxtr?cteg featturtis may r!o_tt.be in phase with
ing to a large margin filtering for classification. This meatho € labels and a time-1ag due 1o the acquisition process ap-

allows to learn the optimal cutoff frequency and phase of th&ears in the signals. For example, in the problem of decoding

filter that may be different from zero. Two methods are pro_arm movements from brain signals, there exists a natural tim

posed and tested on a toy dataset and on a real life BCI datass(p('ft between these two entne_s, h_ence in their Works,_Fﬂlsto_
from BCI Competition ] et al. [7] had to select by a validation method a delay in their

signal processing method.

Signal Sequence Labeling consists in predicting a sequance

Index Terms— Filtering, SVM ,BCI, Sequence Labeling  |n this work, we address the problem of automated tuning
of the filtering stage including its time-lag. Indeed, oujeah
1. INTRODUCTION tive is to adapt the preprocessing filter and all its propsitby

including its setting into the learning process. Our hypsth

The aim of signal sequence labeling is to assign a label to eads that by fitting properly the filter to the classification pro
sample of a multichannel signal while taking into accouet th lem at hand, without relying on ad-hoc prior-knowledge, we
sequentiality of the samples. This problem typically azise  should be able to considerably improve the sequence lapelin
speech signal segmentation or in Brain Computer Interfaceggerformance. So we propose to take into account the temporal
(BCI). Indeed, in real-time BCI applications, each samle oneighborhood of the current sample directly into the deaisi
an electro-encephalography signal has to be interpreted adunction and the learning process, leading to an automettic s
specific command for a virtual keyboard or a robot hence théing of the signal filtering.
need for sample labelingl[d] 2]. For this purpose, we first propose a naive approach based

Many methods and algorithms have already been prosn SVMs which consists in considering, instead of a given
posed for signal sequence labeling. For instance, Hiddetime sample, a time-window around the sample. This method
Markov Models (HMM) [3] are statistical models that are named as Window-SVM, allows us to learn a spatio-temporal
able to learn a joint probability distribution of samplesan classifier that will adapt itself to the signal time-lag. Theve
sequence and their labels. In some cases, Conditional Raimtroduce another approach denoted as Filter-SVM which dis
dom Fields (CRF)[[4] have been shown to outperform thesociates the filter and the classifier. This novel methodljoin
HMM approach as they do not suppose the observation atearns a SVM classifier and FIR filters coefficients. By do-
independent. Structural Support Vector Machines (Structing so, we can interpret our filter as a large-margin filter for
SVM), which are SVMs that learn a mapping from structuredthe problem at hand. These two methods are tested on a toy
input to structured output, have also been consideredder si dataset and on a real life BCI signal sequence labeling prob-
nal segmentatiori [5]. Signal sequence labeling can also dem fromBCI Competition I1[1].
viewed from a very different perspective by considering a
change detection method coupled with a supervised classifie
For instance, a Kernel Change Detection algorithim [6] can be
used fqr_detectlng abrupt c_hanges in a signal anq afterwar%s'l' Problem definition
a classifier applied for labeling the segmented regions.

2. LARGE MARGIN FILTER

This work is funded in part by the FP7-ICT Programme of thedgean Our concern is a signal sequence labeling problem : we want

Community, under the PASCAL2 Network of Excellence, ICT6886 and {0 obtain a sequence of |abe|s_ from a multichannel time-
by the French ANR Project ANR-09-EMER-001. sample of a signal or from multi-channel features extracted
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from that signal. We suppose that the training samples are The matrix W weights the importance of each sample
gathered in a matrixX € RV*¢ containingd channels and value X; ; into the decision function. Hence, channels may
N samples.X; ; is the value of channelfor thei!"* sample. have different weights and time-lag. Inde&d,will automat-
The vectory € {—1,1}" contains the class of each sample. ically adapt to a phase difference between the sample labels

In order to reduce noise in the samples or variability inand the channel signals. However, in this method since space
the features, an usual approach is to filklebefore the clas- and time are treated independently,does not take into ac-
sifier learning stage. In literature, all channels are ugtdidd ~ count the multi-channel structure and the sequentialithef
tered with the same filter (Savisky-Golay for instanceir) [7] samples. Since the samples of a given channel are known
although there is no reason for a single filter to be optimato be time-dependent due to the underlying physical process
for all channels. Let us define the filters appliedXdy the it seems preferable to process them with a filter and to clas-
matrix F' € R*<. Each column of* is a filter for the corre- sify the filtered samples. So we propose in the sequel another
sponding channel iX’ and f is the size of the FIR filters. method that jointly learns the time-filtering and a linearscl

We define the filtered data matrix by: sifier on the filtered sample defined by Hg. (1).

f C . .
> 2.3. Large margin filtering (Filter-SVM
Xij= E Fr i Xit1—mano,j 1) 9 9 9( )

m=1 We propose to find the filteF’ that maximizes the margin of
rfhe linear classifier for the filtered samples. In this case, t
decision function is:

where the sum is a unidimensional convolution of each chal
nel by the filter in the appropriate column &f. ng is the

delay of the filter, for instance, = 0 corresponds to a causal fod
filter andny = f/2 corresponds to a filter centered on the Jr(i, X) = Z ZWij,inJrlfm#»ng,j +wo  (4)
current sample. m=1j=1

wherew andwg are the parameters of the linear SVM classi-

2.2. Windowed-SVM (W-SVM) fier corresponding to a weighting of the channels. By disso-
ciating the filter and the decision function weights, we etpe
that some useless channels (non-informative or too noisy)
for the decision function get small weights. Indeed, due to
the double weightingv; and F' ;, and the specific channel
weighting role played byv;, this approach, as shown in the
g_xperimental section is able to perform channel selection.

The decision function given in Equationl (4) can be ob-
tained by minimizing:

As highlighted by Equatior{1), a filtering stage essentiall
consists in taking into account for a given timenstead of
the sampleX;; ., a linear combination of its temporal neigh-
borhood. However, instead of introducing a filférit is pos-
sible to consider for classification a temporal window aibun
the current sample. Such an approach would lead to this d
cision function for the'” sample ofX:

m=1 j=1

/ n
. 1 C A
fw (i, X) = E : E :WmJXiH*mMM +wo  (2) Jrsvim = §||W||2+§ Z:H(y’Xa fF,i)2+§||F||§? )
=1

wherel € R/*? andw, € R are the classification parame- W.I.t. (¥, w,wo) where||F[| - is the Frobenius norm, and
ters andf is the size of the time-window. Note th#f p|ays is a regularization term to be tuned. Note that without the
the role of the filter and the weights of a linear classifieraln fegularization term| ||, the problem is ill-posed. Indeed,
large-margin framework}” andw, may be learned by mini- in such a case, one can always decrépsg® while keeping
mizing this functional: the empirical hinge loss constant by multiplyingoy o < 1
andF by 1 .
1 cX The cost defined in Equation](5) is differentiable and
Jwsvmu(W) = §||W||% +t5 > H(y X, fw,i)> (3) provably non-convex when jointly optimized with respect to
=1 all parameters. Howeverfgz sy, is differentiable and convex
with respect tow andw, when F' is fixed as it corresponds
to a linear SVM with squared hinge loss. Hence, for a given
value of F', we can define

Where||W||2F =2 W7, is the squared Frobenius norm of
W, C'is aregularization term to be tuned afdy, X, f,i) =
max(0,1—1y;f(i, X)) is the SVM hinge loss. By vectorizing
appropriatelyX andW, problem[(8) may be transformed into 1 <

a linear SVM. Hence, we can take advantage of many linear J(F) = VIPLJI}) 5”“’”2 Ty Z H(y. X, fr,i)’

SVM solvers existing in the literature such as the one pro- =1

posed by Chapellé¢]8]. By using that solver, Window-SVMwhich according to Bonnans et dl] [9] is differentiable. ihe
complexity is aboutO(N.(f.d)?) which scales quadratically if w* andw; are the optimal values for a given*, the gra-
with the filter dimension. dient of the second term of(-) with respect taF' at the point
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Now, sinceJ(F) is differentiable and since its value can be ot
easily computed by a linear SVM, we choose for learning the¢  oost
decision function to minimize/ (F) + 3|/ F||% with respects o

to F instead of minimizing probleni]5). Note that due to the
objective function non-convexity in problerml] (5), these two
minimization problems are not strictly equivalent, butapr ~ Fig. 1. Histograms of both labels with and without filtering
proach has the advantage of taking into account the intrinsi(vertical axis are different) for a 1 channel signal with= 1
large-margin structure of the problem.

Test error with different Test error with different
o (nbtot=30, nbrel=3) size nbtot (0=3, nbrel=3)
Algorithm 1 Filter-SVM solver o2 p [ A—
0.25 0.3
SetF;,=1/ffork=1---dandl=1---f # o2 ————svMm
0.2 . —#— AVGSVM
repeat . . s P 0.2 — o FilterSvMm
Dpr + gradient ofJggy 3s With respect ta?” : o1s e Winsvm
. HMM
(F,w*,w§) < Line-Search alon® r o1
until  Stopping criterion is reached 0.05

For solving the optimization problem, we propose a gra-
dient descent algorithm along with a line search method Fig. 2. Test error for differentr values tbtot = 30,
for finding the optimal step. The method is detailed in algo-nbrel = 3, on the left) and for different number of channels
rithm[d. Note that at each computation #fF) in the line  nbtot (¢ = 3, nbrel = 3, on the right)
search, the optimak* andw are found by solving a linear
SVM. The iterations in the algorithm may be stopped by two

stopping criteria: a threshold on the relative variatiod 6f) ~ Parameters are selected by a validation method. The size
or a threshold on variations @t norm. of the signals is oftl000 samples for the learning and the

Due to the non-convexity of the objective function, it is validation sets and 03000 samples for the test set. All the
difficult to provide an exact evaluation of the solution com-Processes are run ten times, the test error is the the average
plexity. However, we know that the gradient computation ha$Ver the runs.
order of O(N.f.d) and that when/(F) is computed at each
step of the line search,@(N.d?) linear SVM is solved and
aO(N.f.d) filtering is applied.

Win—SVM Filters Filter—SVM Filters

3. RESULTS

o 10
Time lag Time lag

3.1. Toy Example

We use a toy example that consistsrdtot channels, only o o )

nbrel of them being discriminative. Discriminative channelsFig- 3. Coefficients ofi¥’ (left) and coefficients” weighted

have a switching meafi—1,1} controlled by the label and PY w (right) for nbrel = 3, nbtot = 30,0 =3

corrupted by a gaussian noise of deviatianThe length of

the regions with constant label follows a uniform distribuat The methods are compared for differentvalues with

law betweer{30, 40] samples and different time-lags are ap-(nbtot = 30, nbrel = 3). The test error is plotted on the

plied to the channels. We select¢gd= 21 andng = 11 left of Figure[2. We can see that only Avg-SVM, Window-

corresponding to a good average filtering centered on the cuBVM and Filter-SVM adapt to time-lags between the chan-

rent sample. Figuifg 1 shows how the samples are transformeels and the labels. Both Window-SVM and Filter-SVM out-

thanks to the filte# for a unidimensional signal. In this case, perform the other methods, even if for a heavy noise, the last

the mean test error due to the noise is 16% for the unfilteredne seems to be slightly better. Then we test our methods for

signal, while only 2% for the optimally filtered signal. a varying number of channels in order to see how dimension
Window-SVM and Filter-SVM are compared to SVM is handled {brel = 3, o = 3). Figure2 (right) shows the in-

without filtering, SVM with an average filter of sizé(Avg-  terest of Filter-SVM over Window-SVM in hight dimension

SVM) and HMM with a Viterbi decoding. The regularization as we can see that the last one tends to lose his efficiency, and



Method Subl| Sub2 | Sub3 | Avg
BCI Comp. 0.2040| 0.2969| 0.4398| 0.3135
SVM 0.2877| 0.4283| 0.5209| 0.4123
Filter-SVM

f=8nyg=0 0.2337| 0.3589| 0.4937| 0.3621
f=20,n0=0 0.2021| 0.2693| 0.4381| 0.3032
f=50,n0=0 0.1321| 0.2382| 0.4395| 0.2699
Avg-SVM

f =100,n0 =50 | 0.1544| 0.2235| 0.3870| 0.2550
Filter-SVM

f =100,n0 =50 | 0.0537| 0.1659| 0.3859| 0.2018

Table 1. Test Error for BCl Dataset

Class 1 against all

Class 2 against all

Fig. 4. F filters (subject 1) for label 1 against all (left) and
label 2 against all (right).

even to be similar to Avg-SVM. This comes from the fact that

Filter-SVM can more efficiently perform a channel selection
thanks to the weighting ofr. Figure[3 shows the filters re-

turned by both methods. We observe that only the coefficients

of the relevant signals are important and that the otheagsgn
tend to be eliminated by small weights for Filter-SVM, ex-
plaining the better results in high dimension.

3.2. BCI Dataset

We test our method on the BCI Dataset fr@@1 Competition
[l [Z]. The problem is to obtain a sequence of labels out o
brain activity signals for 3 human subjects. The data ctsisis
in 96 channels containing PSD features (3 training session
1 test sessionN =~ 3000 per session) and the problem has
3 labels (left arm, right arm or feet).

We use Filter-SVM that showed better result in hight di-

mension for the toy example. The multi-class aspect of the
problem is handled by using a One-Against-All strategy. The

regularization parameters are tuned using a grid searittaval

tion method on the third training set. We compare our method

to the best BCI competition results (using only 8 sampled) an
to the SVM without filtering. Test error for different filteize

the filter and delays). We show for instance in Figure 4 the
discriminative filterst" obtained for subject 1, and we can see
that the filtering is extremely different depending on trekta

The Matlab code corresponding to these results will be
provided on our website for reproducibility.

4. CONCLUSIONS

We have proposed two methods for automatically learning a
spatio-temporal filter used for multi-channel signal dlbss-

tion. Both methods have been tested on a toy example and on
a real life dataset frorBCI Competition Ill

Empirical results clearly show the benefits of adapting the
signal filter to the large-margin classification problempites
the non-convexity of the criterion.

In future work, we plan to extend our approach to non-
linear case, we believe that a differentiable kernel carsieel u
instead of inner products at the cost of solving the SVM in
the dual space. Another perspective would be to adapt our
methods to the multi-task situation, where one wants tdljin
learn one matrix" and several classifiers (one per task).
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