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ABSTRACT

We address the problem of Bayesian estimation where the statisti-
cal relation between the signal and measurements is only partially
known. We propose modeling partial Baysian knowledge by using
an auxiliary random vector called instrument. The joint probabil-
ity distributions of the instrument and the signal, and of the instru-
ment and the measurements, are known. However, the joint prob-
ability function of the signal and measurements is unknown. Our
model generalizes that underlying the method of instrumental vari-
ables from statistics, in that the instrument does not have to satisfy
any requirements and no parametric form for the optimal regressor
needs to be available.

We begin by deriving an estimator for this scenario, via a worst-
case design strategy. We then propose a non-parametric method for
learning this estimator from a set of examples. Finally, we demon-
strate our approach in the context of enhancement of facial images
that have undergone an unknown degradation.

Index Terms— Baysian estimation, minimax regret, partial
knowledge, learning.

1. INTRODUCTION

A common problem in signal processing is that of estimating an un-
known random quantity x from a set of noisy measurements y. Im-
age denoising and debluring, speech enhancement, and target track-
ing, are a few examples of problems that are frequently addressed via
a Bayesian strategy. The Bayesian framework requires knowledge of
the prior distribution of the signal to be estimated, as well as the con-
ditional probability of the measurements given the signal. The for-
mer can usually be learned from a set of examples {xi} of “clean”
signals. The latter, on the other hand, necessitates either a paired
set of examples {xi,yi} of signals and measurements, or knowl-
edge of the degradation mechanism that yielded the measurements
(e.g., blurring, additive Gaussian noise, etc.). In many applications,
neither of these assumptions is realistic.

In speech enhancement, for example, poor room acoustics and
background noise, such as other speakers, are part of the degradation
that needs to be overcome. These undesired effects typically vary in
time and are very hard to model statistically. Furthermore, no set of
paired examples of clean and degraded signals are available in these
scenarios.
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As another example, consider the problem of enhancement of
facial images taken with a low-grade camera (e.g., a web-cam or a
cellular-phone camera). The degradation in this case includes the
blur due to the lens, the nonlinear response of the CCD sensor,
and non-additive noise. These processes vary with lighting con-
ditions, distance from the camera, etc., and are therefore hard to
model. Moreover, obtaining a paired set of examples of clean and
degraded images requires a complicated experimental setup consist-
ing of a high-quality camera co-calibrated with the low-grade camera
at hand.

A common practice is to resort to simplified degradation model
assumptions, such as Gaussian blur kernel and additive white noise
in image restoration applications, and stationary background noise
in speech enhancement tasks. These models simplify the treatment
but are often far from being loyal to the true physical setting.

Bayesian estimation cannot be carried out without knowledge of
the joint distribution of x and y. Nevertheless, in many applications
there is partial knowledge of this statistical relation. Specifically,
we may know the joint probability function of x and some auxiliary
random vector z as well as that of y and z. For instance, to enhance
a video sequence y of a speaker without knowing the type of degra-
dation it has undergone, one may use the audio z associated with
it. Clearly, one can collect paired examples {yi,zi} of the noisy
video and its associated audio (taken with the given low-quality
camcorder), as well as paired examples {xi,zi} of clean video
sequences with their audio (taken from a high-grade video cam-
era). These sets can be used to learn the densities fX,Z(x, z) and
fY,Z(y,z) but are generally insufficient to determine fX,Y (x,y).

During the last decade, various approaches have been proposed
to enhancing audio or video based on joint audio-visual measure-
ments (see e.g., [1]). There is a fundamental difference, though,
from our approach. For example, in the scenario described above,
the input to the estimator is only the noisy video sequence y, with-
out the associated audio. Thus, it does not fall into the category of
sensor fusion but rather it belongs to the field of video enhancement.
The audio data comes into play only in the training sets {yi,zi}
and {xi, zi} but does not constitute part of the measurements. The
interesting question that arises, then, is whether audio can aid in en-
hancing a silent video sequence (or vice verse), namely one that was
recorded without sound.

In this paper, we address the problem of Bayesian estimation
with partial statistical knowledge via a worst-case design framework.
We also provide a nonparametric algorithm for approximating the
resulting estimator from two sets of paired examples {yi, zi} and
{xi, zi}. Finally, we demonstrate our approach in the context of en-
hancement of facial images that have undergone unknown distortion.

In statistics, a similar setting is encountered in the context of



nonlinear regression with instrumental variables (IV) [2]. Our mod-
eling, however, is more general. Specifically, in the traditional IV
formulation, the instrument Z is required to be independent of the
error X − E[X|Y ], its dimension cannot be smaller than that of X ,
and a parametric form for the optimal regressor E[X|Y ] needs to
be available. In our formulation, on the other hand, none of these
restrictions is needed.

2. MINIMAX REGRET ESTIMATION

Random variables (RVs) are denoted by capital letters (e.g.,X,Y, Z)
and bold lower-case letters denote the values that they take (e.g.,
x,y, z). The RVX is the quantity to be estimated, also termed “sig-
nal”, Y is the measurements RV, and Z is an auxiliary RV, which we
call “instrument”. The RVs X , Y , and Z take values in RM , RN ,
and RQ, respectively. We assume that the joint density functions
fX,Z(x, z) and fY,Z(y,z) are known, whereas fX,Y (x,y) is un-
known.

Our goal is to produce an estimate X̂ = g(Y ) of the signal
X based on the measurements Y , such that the mean-squared error
(MSE)

MSE = E
[
∥X − X̂∥2

]
(1)

is minimized. Careful investigation reveals that MSE minimization
is not a well posed problem in our setting. This follows from the fact
that the MSE depends on fX,Y (x,y) (since X̂ is a function of Y ),
which is unknown. More specifically, it is well known that the min-
imum MSE (MMSE) estimator is given by the conditional expecta-
tion E[X|Y ]. This quantity cannot be computed without knowledge
of fX|Y (x|y) = fX,Y (x,y)/fY (y).

To tackle this difficulty, we use the fact that fX,Y (x,y) is not
completely arbitrary, as it has to be consistent with our knowledge
of fX,Z(x, z) and fY,Z(y, z). Specifically, X can be written as

X = E[X|Z] + U, (2)

where U is a zero-mean RV independent of Z. The first term de-
pends on fX|Z(x|z), which is known. The second term, however,
is arbitrary. Namely, any zero-mean U that is independent of Z and
has an arbitrary statistical relation with Y , is consistent with our
prior knowledge.

The above discussion motivates a worst-case design strategy
where we minimize the regret, for the worst-case RV X that is con-
sistent with our knowledge of E[X|Z]. The regret is defined as the
difference between the squared-norm error and the smallest possible
error that can be achieved if fX,Y (x,y) was known [3]:

E
[
∥X − X̂∥2

]
− E

[
∥X − E[X|Y ]∥2

]
. (3)

Any RV X can be expressed as X = E[X|Y ] + V , where
V is zero-mean and independent of Y . Substituting this expression
into (3) and using the fact that V is also independent ofE[X|Y ]−X̂
(as X̂ is a function of Y ), the regret becomes

E
[
∥E[X|Y ] + V − X̂∥2

]
− E

[
∥V ∥2

]
=

= E
[
∥E[X|Y ]− X̂∥2

]
+ E

[
∥V ∥2

]
− E

[
∥V ∥2

]
= E

[
∥E[X|Y ]− X̂∥2

]
. (4)

Therefore, letting ϕ(Z) denote the known conditional expectation
E[X|Z], we wish to solve

min
X̂∈Y

max
fX,Y,Z∈A

E
[
∥E[X|Y ]− X̂∥2

]
, (5)

where

A =
{
fX,Y,Z : E[X|Z] = ϕ(Z), E[∥X∥2] ≤ ρ2

}
(6)

is the set of feasible probability density functions fX,Y,Z(x,y, z),
and Y denotes the set of RVs who are (Borel measurable) functions
of Y . The bound ρ2 on the variance of X is imposed to guarantee
that the error cannot grow indefinitely. However, as we will see,
the value of ρ does not effect the solution. The following theorem
provides the solution to the minimax-regret problem.

Theorem 1 The solution to problem (5) is given by

X̂ = g(Y ) = E[E[X|Z]|Y ]. (7)

Before proving the theorem, we note that (7) can be computed
explicitly. This is because the inner and outer expectations are func-
tions of fX|Z(x|z) and fZ|Y (z|y) respectively, which are both
known in our setting.
Proof. We will first establish a lower bound on the optimal minimax
regret value and then show that X̂ of (7) achieves this bound, which
proves that it is optimal.

Substituting (2), the inner maximization in (5) becomes

E
[
∥X̂ − E[ϕ(Z)|Y ]∥2

]
+

max
U∈B

{
E
[
∥E[U |Y ]∥2

]
− 2E

[
(X̂ − E[ϕ(Z)|Y ])TE[U |Y ]

]}
,

(8)

where B = {U : E[∥U∥2] ≤ ρ2 − E[∥ϕ(Z)∥2]} is the set of feasi-
ble RVs U in the decomposition (2). Clearly, at the maximum value
of U we have thatE[(X̂−E[ϕ(Z)|Y ])TE[U |Y ]] ≤ 0 since we can
change the sign of U without effecting the constraint. Therefore,

max
U∈B

{
E
[
∥E[U |Y ]∥2

]
− 2E

[
(X̂ − E[ϕ(Z)|Y ])TE[U |Y ]

]}
≥ max

U∈B

{
E
[
∥E[U |Y ]∥2

]}
. (9)

Combining (9) and (8),

min
X̂∈Y

max
fX,Y,Z∈A

E
[
∥E[X|Y ]− X̂∥2

]
≥

≥ min
X̂∈Y

{
E
[
∥X̂ − E[ϕ(Z)|Y ]∥2

]
+max

U∈B

{
E
[
∥E[U |Y ]∥2

]}}
= max

U∈B

{
E
[
∥E[U |Y ]∥2

]}
, (10)

where the equality is a result of solving the outer minimization, ob-
tained at X̂ = E[ϕ(Z)|Y ] = E[E[X|Z]|Y ].

We now show that the inequality can be achieved with X̂ =

E[ϕ(Z)|Y ] = E[E[X|Z]|Y ]. Indeed, with this choice of X̂ , (8)
implies that

max
fX,Y,Z∈A

E
[
∥E[X|Y ]− X̂∥2

]
= max

U∈B

{
E
[
∥E[U |Y ]∥2

]}
, (11)

from which the theorem follows.
The partial-knowledge minimax-regret estimator has a simple

interpretation. We do not know the statistical relation between X
and Y , rendering direct estimation of the signal given the measure-
ments impossible. However, we can calculate the MMSE estimate
ϕ(Z) = E[X|Z] of X given Z, as fX,Z(x,z) is available to us.
This function cannot be used as an estimator, because we do not ob-
serve Z but rather Y . Nevertheless, the statistical relation between
ϕ(Z) and Y is known, since fY,Z(y,z) is known. Therefore, we
can estimate this quantity given the measurements Y in an MMSE
sense, leading to X̂ = E[ϕ(Z)|Y ] = E[E[X|Z]|Y ].



2.1. Best-Case Analysis

The above estimator was derived from a worst-case perspective. We
now take a best-case viewpoint. Namely, we analyze which distribu-
tions fX,Y,Z are the “best” for our approach.

Perhaps the simplest “optimal” situation arises when the signal
is a deterministic function of the instrument, X = ψ(Z). In this
case, (7) coincides with the MMSE estimate:

X̂ = E[E[ψ(Z)|Z]|Y ] = E[ψ(Z)|Y ] = E[X|Y ]. (12)

A more complicated scenario happens when {X,Z, Y } form a
Markov triplet in the sense that fX|Y,Z(x|y, z) = fX|Z(x,z). In
this case (7) reduces to

E[E[X|Z]|Y ] =

∫ ∫
xfX|Z(x|z)fZ|Y (z|y)dxdz

=

∫ ∫
xfX|Y,Z(x|y, z)fZ|Y (z|y)dxdz

=

∫ ∫
xfX,Z|Y (x, z|y)dxdz

=

∫
xfX|Y (x|y)dx = E[X|Y ]. (13)

3. NONPARAMETRIC REGRESSION

In many practical scenarios no explicit expressions for fX,Z(x, z)
and fY,Z(y, z) are available, but rather only sets of examples drawn
from these densities. We now propose a nonparametric method for
approximating the minimax-regret estimator using such sets of ex-
amples.

Suppose that one has access to two sets of paired examples
{xi,z

x
i }Pi=1 and {yi,z

y
i }

L
i=1, drawn independently from the den-

sities fX,Z(x,z) and fY,Z(y,z) respectively. To obtain a nonpara-
metric approximation of the minimax-regret estimator, we begin by
estimating ϕ(z) = E[X|Z = z] based on {xi, z

x
i }Pi=1.

The Nadaraya-Watson nonparametric estimator of ϕ(z) is given
by [4, 5, 6]

ϕ̂(z) =

∑P
i=1 xiKZ

(
h−1
Z (z − zx

i )
)∑P

i=1KZ

(
h−1
Z (z − zx

i )
) , (14)

whereKZ(z) is a density function called kernel and hZ is a positive
scalar called bandwidth. Under mild conditions on KZ(z), various
converges properties of ϕ̂(z) to ϕ(z) are known when P → ∞ and
h→ 0 at an appropriate rate [4, 5, 6].

The same nonparametric method could also be used to estimate
g(y) = E[ϕ(Z)|Y = y] = E[E[X|Z]|Y = y], had we had a
set of examples {yi, ϕ(z

y
i )}. Such a set is, of course, unavailable

since there is no analytic expression for the function ϕ(z). However,
recall that ϕ̂(z) approximates ϕ(z) arbitrary well as the sample size
P increases. We can thus use the set {yi, ϕ̂(z

y
i )}

L
i=1 to construct a

Nadaraya-Watson-like nonparametric estimator of g(y). The overall
nonparametric regression is given by

ĝ(y) =

L∑
j=1

 P∑
i=1

xiKZ(h−1
Z

(z
y
j −zx

i ))

P∑
i=1

KZ(h−1
Z

(z
y
j −zx

i ))

KY

(
h−1
Y (y − yj)

)
L∑

j=1

KY

(
h−1
Y (y − yj)

) ,

(15)

where KY (y) and hY are the kernel and bandwidth associated with
the training set {yi, ϕ̂(z

y
i )}

L
i=1.

The above nonparametric regression works as follows. For each
training example (yj , z

y
j ), we approximate the conditional expecta-

tion ϕ̂(zy
j ) = E[X|Z = zy

j ] based on the set {xi, z
x
i }Pi=1. The re-

sulting set of estimates {ϕ̂(zy
j )}

L
j=1, is then linearly combined with

weights that depend on the resemblance of the measurements y to
each of the examples {yj}Lj=1, to produce the final estimate ĝ(y).

4. APPLICATION TO FACIAL FEATURE RECOVERY

We now demonstrate the partial-knowledge Baysian estimation
framework introduced above, in the context of facial image enhance-
ment.

Assume we are given an image y of a face taken with a low-
grade camera (e.g., a web-cam or a cellular-phone camera) whose
degradation model is unknown. Furthermore, a set of paired exam-
ples of “clean” and degraded images is unavailable. In such situ-
ations, one cannot use standard Bayesian estimation techniques to
enhance the image, since fX,Y (x,y) is unknown and cannot be
learned from examples. More specifically, in applications of this
sort we can usually collect many examples of “degraded” images
{yi} taken with the low-grade camera as well as many examples
of “clean” facial images {xi} taken with some high-quality sen-
sor. However these two separate un-paired sets are not sufficient
for learning the joint density fX,Y (x,y).

To enhance the degraded image y via our partial-knowledge
Bayesian estimation framework, we need to be able to introduce an
instrument z whose relations with x and with y can be learned from
examples. This can be done, for example, by manually marking a set
of points in several predefined locations both on the degraded images
{yi} and on the clean images {xi}. The vector z, then, comprises
the locations of the annotated points. This enables the construction
of the two paired sets of examples {yi, z

y
i }

L
i=1, and {xi,z

x
i }Pi=1,

as required in our framework.
Figure 1 depicts several manually annotated clean and degraded

facial images taken from the AR database [7]. The point annotations
were taken from [8]. The images were all normalized such that the
eyes appear at predefined locations. In practice, this preliminary step
can be performed automatically [9]. Here, the degradation (which is
unknown to our algorithm) is a threshold operation. Thus, y is a
binary image.

It is important to observe that x and y are both images of size
130 × 92, and thus correspond to vectors in R11960. On the other
hand, z comprises 22 points, which means that it corresponds to a
vector in R44. This huge difference in dimensionality indicates that
the statistical relation between x and y cannot possibly be charac-
terized accurately solely in terms of fX,Z(x,z) and fY,Z(y,z). In-
deed, z encompasses only geometric information about the face, and
completely lacks any gray-level information. Therefore, one cannot
expect to loyally recover the original image with this type of instru-
ment, but rather only the expression and dominant facial features.

Figure 2(c) shows the recovery results for several degraded im-
ages. In this experiment, we used P = 235 “clean” examples
{xi, z

x
i }Pi=1 and L = 137 degraded examples {yi, z

y
i }

L
i=1 of dif-

ferent subjects. The person whose noisy image y was to be cleaned,
was not included in either database. The kernelsKY (y) andKZ(z)
were taken to be Gaussians. The same values of hY and hZ were
used in all our experiments. In practice, automatic bandwidth selec-
tion techniques can be applied.

As can be seen, the facial expression, as well as the dominant



(a) Annotated clean examples

(b) Annotated degraded examples

Fig. 1. Examples from the clean and degraded databases.

facial features, were indeed recovered correctly by the minimax esti-
mator. However, the exact gray-level profile, which is among the im-
portant cues for distinguishing identity, was not restored accurately.

An alternative approach to tackling the facial recovery task is
to project the degraded image y onto a low-dimensional subspace
learned from the clean examples {xi}Pi=1 via e.g., PCA [10]. We
note that this methodology does not make use of the instrument z,
neither does it take into account the degraded examples {yi}Li=1.
Furthermore, it is relevant only for applications where x and y are
of the same dimension, whereas our proposed technique is general.
Nevertheless, it relies on the observation that facial images approxi-
mately lie in a low-dimensional subspace, as experimentally shown
in [10]. Therefore, removing from y the component perpendicular
to this space, is expected to at least partially compensate for the un-
known degradation. Figure 2(d) depicts the results obtained with the
PCA approach, where the dimension of the subspace was tuned to
account for 95% of the variance in the training set {xi}Pi=1. As can
be seen, the gray-level profile in these images is much closer to the
degraded images than to the original ones. Moreover, this technique
produces artifacts which lead to unsatisfactory results. Similar arti-
facts were observed for different PCA-space dimensions.

5. CONCLUSIONS

In this paper we proposed a novel approach for modeling partial
Bayesian knowledge by using an instrumental variable. Our ap-
proach generalizes the instrumental variables methodology used in
statistics in that no restrictions on the instrument are imposed. We
derived an estimator suited for our model, via a worst-case design
strategy. Finally, we presented experimental results on recovering
facial features from images that have undergone unknown degrada-
tion. As the technique is general and does not impose restrictions on
the instrument, it can be applied to a wide variety of applications in
signal processing.
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