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Abstract—Many applications of wireless sensor networks re-
quire precise knowledge of the locations of constituent nodes.
In these applications, it is desirable for the nodes to be able to
autonomously determine their locations before they start sensing
and transmitting data. Most localization algorithms use anchor
nodes with known locations to determine the positions of the
remaining nodes. However, these existing techniques often fail in
hostile environments where some of the nodes may be compro-
mised by adversaries and used to transmit misleading information
aimed at preventing accurate localization of the remaining sen-
sors. In this paper, a computationally efficient secure localization
algorithm that withstands such attacks is described. The proposed
algorithm combines iterative gradient descent with selective
pruning of inconsistent measurements to achieve high localization
accuracy. Results show that the proposed algorithm utilizes fewer
computational resources and achieves an accuracy better than
or comparable to that of existing schemes. The proposed secure
localization algorithm can also be used in mobile sensor networks,
where all nodes are moving, to estimate the relative locations of the
nodes without relying on anchor nodes. Simulations demonstrate
that the proposed algorithm can find the relative location map
of the entire mobile sensor network even when some nodes are
compromised and transmit false information.

Index Terms—Gradient descent, mobile sensor networks
(MSNs), secure localization, wireless sensor networks (WSNs).

I. INTRODUCTION

R ECENT technological advances in microelectromechan-
ical systems (MEMS) and wireless communications have

enabled the development of small, low-cost, low-power sensor
nodes capable of sensing data of importance, processing it, and
transmitting it to other nodes or a base station through wireless
medium. Multiple sensors deployed in a given area form a net-
work and are referred to as a wireless sensor network (WSN).
These WSNs are expected to form the backbone of future intel-
ligent networks for a broad range of applications such as under-
water surveillance [1], military surveillance, traffic monitoring
[2], habitat monitoring [3], forest fire detection [4], and flood
detection [5].
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In such applications as forest fire and flood detection [4], [5],
sensors alert the base station to any changes in parameters that
indicate a potential for forest fire or flooding. The base station
needs to know the locations of the nodes transmitting the data,
so that appropriate actions may be taken at the relevant site to
prevent disasters or to provide early response and contain the
damage. In many applications, static sensors may be randomly
deployed within an area using helicopters or road vehicles. As
a result, the sensor locations are not known a priori and need to
be determined after deployment.
Location information is also important for correctly inter-

preting the sensed data during communication of sensing mea-
surements among nodes and the base station. Each node may
not be within the communication range of every other node or
the base station. If a node needs to transmit a message to an-
other node with which it does not share a direct communica-
tion link, the message should be routed through intermediate
nodes in the network. To minimize the communication cost, the
shortest route between the transmitter and the recipient should
be used. Such situations also arise in cooperative communica-
tions applications [6]. Many routing algorithms rely on the loca-
tions of the nodes in the network to determine the shortest path
for transmitting the message [7].
Additionally, sensors should be optimally deployed to pro-

vide maximum coverage in a given area at a low communica-
tion cost. This can be achieved with the help of mobile nodes
[8]. The algorithms used for such mobility assisted efficient de-
ployment require sensors to be location aware. In robotics ap-
plications such as distributed formation and coordination, where
mobile robots with limited communication range coordinate to
achieve a common task, the location information of the robots is
needed to ensure connectivity in the network [9]. Thus, we see
that location information is important in both static and mobile
sensor networks.
Node locations can be obtained by using GPS devices on the

nodes. However, equipping each sensor with a GPS may not be
feasible for large scale networks with small low-cost sensors.
As a result, an important first step in setting up a sensor net-
work is to accurately determine the position of each individual
node through a process called localization. Most localization
schemes rely on a set of beacon or anchor nodes with known
location information to identify the positions of the remaining
nodes. In these schemes, anchor nodes transmit a beacon signal
which contains their own location, using which other nodes can
estimate their distances from the anchors. Commonly used dis-
tance metrics are received signal strength (RSS) [10], time of
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arrival (ToA), time difference of arrival (TDoA) [11], angle of
arrival (AOA) [12], and hop count [13]. Once the non-anchor
nodes have a sufficient number of distance measurements, they
can determine their location by triangulation or trilateration.
In hostile environments, an adversary may wish to prevent

accurate localization of the nodes and thus prevent the entire
network from functioning properly. The adversary may com-
promise some nodes and thereby gain access to the secret keys
and other data stored on the node. This information can then be
used to provide misleading information to the base station and
other nodes in the network. Incorrect location references may
also be provided by intercepting and replaying the packets con-
taining measurements transmitted by anchor nodes. Without ef-
fective approaches to filter out or nullify the effect of incorrect
measurements, localization would result in a wrong estimate of
the sensor position. Hence, there is a strong need to design se-
cure localization algorithms that are robust to such intentional
attacks and accurately determine the positions of sensors in the
presence of adversaries. At the same time, as the sensors have
limited memory, computational, and energy resources, these se-
cure localization algorithms should be resource efficient.

A. Prior Work

A related problem of location verification has been explored
in the literature, where the focus is on developing strategies
to verify that a node is indeed located at the claimed position.
Methods such as verifiable multilateration, location verification
using mobile base stations, and several other distance bounding
protocols have been proposed to withstand attacks in secure lo-
cation verification problems [14]–[16].
The problem of secure localization in WSNs in the presence

of malicious adversaries has also attracted attention in the re-
search community. A greedy approach to find the location con-
sistent with the largest number of measurements from anchor
nodes was explored in [17]. A voting-based scheme was also
proposed, in which the localization area is divided into a grid
and the vote count of each grid point is incremented if its dis-
tance from an anchor node is approximately equal to the dis-
tance measurement obtained from that anchor. A similar voting
approach with the help of sectored antennas and beacon nodes
was proposed in [18]. From a signal processing point of view,
the voting based scheme is similar in spirit to the Hough trans-
form used for detecting objects with certain shapes in computer
vision and image processing literature [19]. In the Hough trans-
form, a voting procedure is carried out in a parameter space,
from which candidate parameters for objects are determined as
local maxima of accumulated votes. Similarly, in the voting-
based scheme for secure localization, the location with the max-
imum votes is identified as the position of the node.
A least median square (LMdS) approachwas proposed in [20]

to solve the localization problem for scenarios where less than
50% of the nodes are malicious. This method shares similari-
ties with the random sample consensus (RANSAC) algorithm
[21], as it uses several subsets of nodes to identify candidate
locations, and then chooses the solution that minimizes the me-
dian of the residues. Most of these existing methods localize the
nodes with small error as long as the fraction of malicious nodes

is not too large. However, the memory requirement and compu-
tational cost of running these algorithms is still high and can be
difficult to meet in resource limited applications.
In contrast to static sensor networks, very little work has been

done on secure localization in mobile sensor networks. A two
stage Monte Carlo based approach for localization was pro-
posed in [22]. In the first stage, using the current estimate of
the location, a fixed number of candidate sample locations that
satisfy a constraint on the maximum velocity of the nodes are
randomly generated. In the second stage of filtering, samples
that are inconsistent with the measurements obtained from an-
chor nodes are filtered out, and a final estimate of location is
found by averaging the remaining samples. The localization ac-
curacy of the algorithm in [22] was improved in [23] using a
box shaped region to sample particles in the prediction phase
and eliminate inconsistent particles in the filtering stage. These
algorithms did not consider the presence of malicious anchor
nodes in the network.
The Monte Carlo algorithm was extended to incorporate

security by modifying the filtering stage in [24]. Instead of
identifying points that are consistent with all measurements,
the position consistent with the maximum number of measure-
ments from anchors is determined. This approach is similar to
the voting-based approach [17] for secure localization in static
sensor networks explained previously and suffers from the same
drawback of high computational and storage requirements. Al-
gorithms proposed in [25] use the hop count information and
communication range information of sensor nodes to find a
feasible region for the node position and use this information to
estimate the location. These prior works assume the presence
of some anchor nodes that are used to determine the position
of the mobile nodes, and cannot be applied to mobile networks
without anchor nodes.
In this paper, we develop an iterative technique for secure lo-

calization that is applicable to both static and mobile networks.
In terms of the vector interpretation for iterative updates, the
proposed algorithm has similarities to the robust localization
algorithm inspired by self organizing maps proposed in [26].
The algorithm in [26] considered noise, but was not designed to
withstand attacks by active adversaries, whereas we develop an
algorithm for localization that can filter out malicious measure-
ments obtained from nodes compromised by adversaries.

B. Overview of This Work

In this paper, we propose a computationally efficient method
to solve the problem of secure localization based on gradient de-
scent. The main idea behind the algorithm is to minimize a suit-
able cost function involving the position of the localizing node
and the available measurements using an iterative gradient de-
scent approach. The cost function is dynamically updated to re-
move inconsistent measurements arising from malicious nodes.
The algorithm operates in two stages. In the first stage, the cost
function involves data from all anchor nodes. In the second
stage, selective pruning of inconsistent measurements is per-
formed to mitigate the effect of malicious nodes on the solu-
tion. The second stage of the algorithm is similar in spirit to
the approach employed in [27] to find the least trimmed squares
(LTS) solution to data containing outliers [28]. We show that the
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proposed algorithm can be used for secure localization in both
static and mobile sensor networks, and can achieve localization
accuracy better than or comparable to existing algorithms in a
computationally efficient manner.
This paper is organized as follows. Section II describes the

problem setup in the simple case where the distance between the
localizing node and the anchor nodes is measured directly. The
proposed algorithm for secure localization is then described. In
Section III, the gradient descent approach for secure localization
is applied to the scenario when only time difference of arrival
(TDoA) measurements are available. Section IV considers the
case of secure localization of mobile sensors. Section V sum-
marizes the contributions and concludes the paper.

II. SECURE LOCALIZATION IN STATIC SENSOR NETWORKS

In this section, we consider the secure localization problem
for sensor networks where direct measurements of the distance
between the localizing node and the anchor nodes are available.
These measurements may be obtained through different tech-
niques such as hop count and ToA measurements. When ToA
is used to obtain the distance measurements, each anchor node
transmits a beacon signal that includes a timestamp and its own
location. The localizing node determines its distance from the
anchor node based on the embedded timestamp and the time at
which it receives the beacon signal. The scenarios where direct
measurements of the distance are not available, such as when
TDoA is used for localization, will be considered in Section III.

A. Problem Formulation

Let be the number of anchor nodes whose locations are
known. These may represent nodes that are deployed at known
locations and serve to bootstrap the localization of the other
sensors in the network. Once a node has determined its own
location, it can function as an anchor node for localizing the
remaining nodes. Let us denote the true position of the local-
izing node by . The localizing node receives
the location of each of the anchor nodes and
an estimate of the distance between the anchor node and itself,
which may be obtained using techniques such as ToA. These
distance measurements may be noisy in practice, and we model
the measurement errors as additive Gaussian noise with zero
mean and variance . Given the set of noisy measurements

, an estimate for the node’s lo-
cation can be obtained by solving the following
overdetermined system of equations in a least square (LS) sense:

(1)

Nodes compromised by adversaries may intentionally report
wrong information in their measurements. In these
cases, the LS estimate may be quite far from the true location.
Thus, we need secure localization algorithms that are resilient
to such attacks.
In the static nodes setting we consider two types of adver-

saries with different objectives and resources. The first kind of
adversaries are able to compromise multiple nodes, but have

limited communication and computational resources to coor-
dinate the attacks launched by these nodes. We refer to these
attacks as non-coordinated attacks. The second type of adver-
saries have more resources and want to not only prevent the net-
work from precisely locating the nodes, but also try to shift the
location estimates to some desired position. We refer to these
attacks as coordinated attacks. Detailed formulations of these
attacks are as follows.
1) Noncoordinated Attacks: In noncoordinated attacks, the

adversary is assumed to act independently at each compromised
node and aims to prevent accurate localization by perturbing the
distance estimates reported to the localizing node. Without loss
of generality, we assume that each malicious node modifies the
value of the measurements, since modifying any

other parameter can be transformed into an equivalent modifi-
cation of the value. We model the noncoordinated attack by
adding independent uniformly distributed perturbations to the
actual distance estimates from each malicious node and provide
this information to the localizing node. Let
be the actual distance between the localizing node and the an-
chor. Define

if node is malicious
otherwise

where the are independent zero-mean uniform random
variables with variance that model the perturba-
tion introduced from noncoordinated attacks, and the
are independent Gaussian variables representing
the measurement noise. Under the noncoordinated attack
setting, the localizing node receives the measurements

from anchor nodes, and uses
this information to determine its position.
2) Coordinated Attacks: A stronger attack against the net-

work can be launched bymultiple compromised nodes acting to-
gether to make a localizing node estimate its position as

, which is some arbitrary point determined by the
attackers. We model this scenario by reporting the distance be-
tween the anchor node position and as the measure-
ment from the malicious anchor. Specifically, let be defined
as

if node is malicious
otherwise

where is the actual distance between the th anchor
and the localizing node and represents measurement noise
as before. The localizing node receives the measurements

from the anchor nodes and uses
this information to determine its position. The strength of the
coordinated attack is characterized in terms of the distance,

, between the actual position and the position
reported by malicious nodes.

B. Proposed Method for Secure Localization

In this subsection, we propose an iterative secure localization
algorithm by combining gradient descent with a selection stage
to filter out the malicious measurements [29]. We first consider
the likelihood of the measurements given the true position of the
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Fig. 1. Force vector representation of terms contributing to the gradient.

localizing node. When there is no malicious node, and the mea-
surement noise is Gaussian, the likelihood of the measurements
given the true position of the localizing node is

(2)

The maximum-likelihood (ML) estimate for the true position
can then be found by maximizing the likelihood of the mea-
surements, or equivalently, by minimizing the negative of the
exponent

(3)

where denotes the cost function in (3) and corresponds to
the negative of the exponent in (2). The ML estimate is thus
identical to the LS estimate obtained by solving (1) in a least
squares sense.
In the proposed secure localization algorithm, we adopt an

iterative gradient descent algorithm to first search for the LS
solution. The algorithm starts by randomly initializing the esti-
mate to some point in the deployment area. At the th step
of the iteration, the gradient of the cost function is eval-
uated at the current estimate , and the estimate is then
updated by moving it one step in the direction of the negative of
the gradient. Let denote the negative of the gradient of the
cost function at the current estimate of the position

where denotes the derivative with respect to . The es-
timate is then updated by moving it one step in the direction of
the negative of the gradient as

where is the step size at the th iteration and
is the unit vector in the direction of the

negative of the gradient. The negative gradient is found
to be

(4)

where we define the term as

Conceptually, as shown in Fig. 1, the gradient component
can be visualized as a “force vector” with direction along

the line joining the current estimate of the location and
the position of the anchor node and magnitude equal to the
distance between the current estimate and the circle of radius
around the anchor node. The sum of these force vectors gives
the overall gradient.
Each iteration results in a new estimate that has a higher prob-

ability of being the true location of the node. This gradient de-
scent algorithm eventually converges to the ML estimate which
is the same as the LS estimate when in the absence of the ma-
licious nodes. As described previously, due to malicious mea-
surements from adversaries, the LS estimate can have large er-
rors. Hence, once the gradient descent algorithm converges to
the LS solution, we switch to a selection stage in which some
force vectors are pruned as discussed next.
Selection Stage: In the noncoordinated attack case, the inde-
pendent perturbations added by various malicious nodes tends
to average out and the LS solution is close to the true position. In
the coordinated attack case whereby less than 50% of the nodes
are malicious, the LS estimate obtained from the first stage of
the algorithm is closer to the true position than to the position

chosen by the malicious nodes. This is because in such
situations, the true position satisfies more equations in (1) than
the position reported by the malicious nodes. So the LS solution
tends to be closer to the true position than .
As a result, when the estimate of the node’s position

approaches the LS estimate, the residues corresponding to the
terms arising from the malicious nodes tend to be larger than
those from the honest nodes. We update the cost function to ex-
clude the terms with large residues, which are likely to corre-
spond to the measurements from the malicious nodes. In our
algorithm, we achieve this by pruning out a fraction of the force
vectors with large magnitudes and using the remaining vectors
to compute the gradient. The estimate is updated by moving it
one step in the direction of this modified gradient at each iter-
ation. The final algorithm is shown in Algorithm 1, and Fig. 2
shows a flowchart of the proposed algorithm.
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Fig. 2. Flow chart for localization algorithm.

C. Comparison of Computational Complexity

We now compare the computational complexity of the pro-
posed gradient descent algorithm to the voting scheme [17] and
the LMdS scheme [20]. Table I shows the computational com-
plexity for each algorithm and the average run time for a set of

TABLE I
COMPARISON OF RUN TIME COMPLEXITY OF DIFFERENT ALGORITHMS

experiments conducted on MATLAB platform. From this table,
we see that for the voting scheme, the complexity increases with
the square of the grid size. To obtain better localization accuracy,
the grid needs to be quantized more finely, leading to a higher
number of cells in the grid. Alternatively, grids can be coarsely
quantized in the beginning and the localization resolution can
be improved by conducting multiple stages of the voting al-
gorithm, with each stage using progressively finer cells in the
areas of the grid which receive high number of votes in the pre-
vious stage. This leads to high computational requirements in
the voting scheme.
The LMdS approach requires a certain minimum number of

subsets of nodes , which increases as the percentage of ma-
licious nodes increases, in order to ensure that one estimate
is the correct estimate with very high probability. An LS es-
timate needs to be found for each of these subsets, which is
computationally expensive. The computation complexity asso-
ciated with the LMdS method is calculated using the linear least
squares (LLS) algorithm described in [30]. LMdS algorithm
first performs LLS on different subsets of size giving a
computational complexity of . After finding each LLS
solution, a consistency check with measurements from all
nodes is performed, which has a computational complexity of

for all rounds. In the final step, another LS esti-
mate is found using the maximum size subset of nodes that have
passed the consistency test. The computation complexity of this
final operation is smaller than that of the first two steps. The
overall computation complexity of LMdS is ,
which can be represented as , due to .
In contrast, the computational complexity of the proposed

scheme is independent of the number of malicious nodes and
the grid size, although it increases linearly with the number of
iterations. The number of iterations can be reduced by choosing
variable step size to increase the convergence rate of the algo-
rithm [31]. At each iteration, our proposed algorithm calculates
only the distance of the current estimate from the anchor nodes
and requires less computation. Thus, the gradient descent algo-
rithm is computationally simpler than the voting-based scheme
and the LMdS method.
In Fig. 3, we plot the run time required to achieve a desired lo-

calization accuracy for different secure localization algorithms
considered in this paper. From this plot, we see that the run time
required to achieve a given localization accuracy for our pro-
posed method is approximately eight times lower as compared
to the LMdS method. Comparing the voting scheme and gra-
dient descent based scheme, we can see that they have similar
run time at settings that result in medium to high location error;
Location accuracy for the voting scheme can be improved by
increasing the grid density, which leads to a quadratic increase
of run time and memory use. The accuracy for our proposed
gradient descent scheme can be controlled by the terminating
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Fig. 3. Comparison of run-time for different localization schemes for a fixed
localization error.

condition of the iteration, and the run time for higher location
accuracy increases quite moderately and is considerably lower
than the other two schemes.

D. Simulation Results

We experimentally compare our proposed algorithm with
two existing secure localization methods, namely, the voting
scheme and the LMdS algorithm. The simulation parameters
are similar to those in [17] to allow for comparison of the re-
sults. Thirty anchor nodes are randomly deployed in an area of
size 60 m 60 m. The measurement noise standard deviation is
set to be m. For the LMdS method, the number of subsets
is set to be and the number of nodes in each subset
is chosen to be . For the voting scheme, the region of
deployment is divided into a square grid with each cell of size
1 m 1 m, so that . We use the algorithm described in
[17] to find the votes for each cell. For the proposed algorithm,
in the selection stage, we prune 50% of the force vectors with
the largest magnitude and the number of iterations .
The threshold for switching to selection stage is determined
experimentally by varying its value between 0.01 and 0.1 and
choosing the value that gives the best localization performance.
For our simulations, we determine the threshold value to be
0.9. The results shown are obtained by averaging over 1500
runs of simulations.
We compare the performance of our proposed method when

a variable step size and a fixed step size are used for the gra-
dient descent based method, respectively. In the fixed step size
version of the algorithm, for all iterations

. For the variable step size algorithm, we adopt the
following step size that is linearly decreasing:

(5)

1) Noncoordinated Attacks: The localization accuracy
achieved by various secure localization algorithms under
noncoordinated attacks with different parameters is shown in
Fig. 4. In particular, Fig. 4(a) shows the localization error as a
function of the noise standard deviation added by the
malicious nodes when 30% of the nodes are compromised; and

Fig. 4. Comparison of localization schemes for noncoordinated attacks. (a)
30% malicious nodes. (b) 60% malicious nodes.

Fig. 4(b) shows the corresponding results when 60% of the
nodes are compromised.
From Fig. 4(a) we observe that the localization error using

our method is comparable to the other schemes when the frac-
tion of malicious nodes is less than 50%. For 60% malicious
nodes, the LMdS method results in a localization error that in-
creases with attack strength, as it cannot tolerate attacks by more
than 50% of the nodes, but the proposed method can still lo-
calize the node with high accuracy. The independent distance
random perturbations by the malicious nodes result in randomly
oriented force vectors, which have a mutually canceling effect
when summed up to compute the overall gradient. As a result,
the proposed algorithm is robust against noncoordinated attacks,
and the average localization error does not increase as the attack
noise variance increases. The voting-based scheme also
gives good localization accuracy, but the error is slightly higher
than the gradient descent method because of the discrete nature
of the grid points. The localization accuracy in the voting based
scheme can be increased by finely quantizing the grid points at
a cost of higher computation and memory.
While the average localization error is a useful indicator of

the accuracy of the algorithm, it may be dominated by the cases
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Fig. 5. Probability of converging to the correct estimate for different localiza-
tion schemes under noncoordinated attacks for m.

where the algorithm does not converge to the true position. To
obtain a different perspective on the accuracy, we compare the
probability that the algorithm correctly identifies the true po-
sition. Due to the presence of noise, finite grid size, and step
size, we consider that the algorithm has converged to the cor-
rect location if the final estimate is within a distance of me-
ters from the true location. Fig. 5 compares the probability of
converging to the correct estimate as a function of the fraction
of malicious nodes participating in the attack, for different lo-
calization schemes under noncoordinated attacks. We see that
when the fraction of malicious nodes is less than 50%, all the se-
cure localization algorithms except the simple LS method have
similar performance and converge to the correct estimate about
90% of the time. However, if the fraction of nodes participating
in the attack is more than 50%, the proposed scheme outper-
forms the existing algorithms. For example, when the fraction
of attacking nodes is 60% or 70%, the gradient descent approach
has approximately 10% higher probability of converging to the
true position.
2) Coordinated Attacks: Fig. 6(a) shows the localization

error under coordinated attack by 30% of the nodes. The -axis
represents the distance between the true location of the
sensor and the point chosen by the malicious nodes at
random. From the figure, we observe that when the fraction of
malicious nodes is 30%, the localization accuracy for all the
methods except LS is almost the same. We obtained similar
results when the fraction of malicious nodes is 35%. The
localization error for the proposed gradient descent method is
slightly higher than the other techniques under this setting. The
reason for this behavior is that as the percentage of malicious
nodes increases, even a few uncompromised anchor nodes
whose distances from malicious position and true position are
approximately the same can cause received data from anchor
nodes to be more consistent with malicious positions. This
phenomenon will be discussed in detail in Section II-E.
Fig. 6(b) compares the probability of converging to the true

location for various algorithms under coordinated attacks when
m. From this figure, we see that all the secure local-

ization schemes have similar performance and converge to the
correct estimate about 90% of the time for coordinated attacks

Fig. 6. Performance of the secure localization schemes under coordinated at-
tacks by 30% of the nodes. (a) Average localization error and (b) probability of
correctly identifying the true position for m.

by less than 30% of the nodes. For attacks by a larger fraction
of nodes, the probability of converging to the true position is
slightly lower for the gradient descent algorithm with variable
step size when compared to the LMdS algorithm. This is again
due to the honest nodes that are at approximately the same dis-
tance from both the true position and the position reported by
the malicious nodes.
Measurement noise also has a major impact on the perfor-

mance of localization algorithms. In our simulations, we ob-
served that the localization error is approximately same for a
fixed , and increases linearly with an increase in for all three
secure localization methods considered in this paper.

E. Discussions

In the first stage of our algorithm, we find the LS estimate of
the location in an iterative manner. After convergence in the first
stage, our algorithm switches to the second stage to prune out-
liers. Modeling the secure localization problem in such an iter-
ative framework helps us see similarities between our proposed
algorithm and the iterative LTS algorithm, and understand the
robustness of our proposed algorithm. In particular, our pruning
stage can be modeled similar to the iterative approach used to
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solve the LTS problem proposed in the literature for robust es-
timation of the parameters of observations containing outliers
[27].
To demonstrate this similarity, each term inside the summa-

tion in (3) can be considered as the residual error in estimating
the true location . We can rewrite (3) in the following form:

(6)

where denotes the residual in estimating
the true location. Let be the
ordered squared residuals of the set . The LTS
method seeks to minimize the following cost function:

(7)

where is the number of residues used to evaluate the LTS cost
function. An efficient iterative method to solve the LTS problem
was proposed in [27]. In this iterative approach, parameters esti-
mated in the th iteration are used to calculate the residues,
’s in the th iteration. The residues are then arranged in an as-

cending order of their magnitudes and an estimate of parame-
ters is obtained for the th iteration by finding the LS estimate
using the smallest residue points. Our proposedmethod is sim-
ilar to this general statistics approach, and the magnitude of our
force vectors, , reflect the magnitude of
the residues, . However, in the iterative LTS
method, an LS estimate is obtained at each iteration, which re-
quires rather high computation power. Instead of following the
conventional iterative LTS method [27], we iteratively update
the location estimate by a step size in the direction of the de-
creasing cost function. We see from experiments that our algo-
rithm converges even after relaxing the parameter update cri-
teria of the conventional iterative LTS algorithm.
The breakdown point of the iterative LTS algorithm, i.e., the

number of outliers that the algorithm is guaranteed to tolerate,
is shown in the literature to be approximately 50%, which is the
same as that of the LMdS method. As the proposed algorithm
shares the spirit of the iterative LTS algorithm, the proposed al-
gorithm has the same breakdown point. However, in noncoor-
dinated attack case, our algorithm can tolerate more than 50%
malicious nodes because of the statistically canceling nature of
the attacks as discussed in Section II-D1. In coordinated attacks,
depending on the topology of the sensor nodes, the breakdown
point can be slightly less than 50% as discussed next.
Fundamentally under coordinated attacks, it is impossible for

any scheme to perform secure localization using only the loca-
tion and the distance information if the number of coordinating
malicious nodes is more than the number of honest nodes. In
these cases, there are more consistent equations satisfied by the
location reported by the malicious nodes than those sat-
isfied by the true node location . Hence, without any addi-
tional information to authenticate, it is impossible to distinguish
between these two locations, and robustness against coordinated
attacks should be focused on the situation when less than 50%
of the nodes are compromised. This scenario was analyzed in
[32] and it was shown that if the total number of nodes, , in

Fig. 7. Geometry for the bound on the maximum number of colluding nodes.

the network is more than , where is the number of ma-
licious nodes, then the position of the localizing node can be
computed with a bounded error.
In practical scenarios, adversaries can create more consis-

tent measurements for the malicious location even when they
are unable to compromise a majority of the nodes, by care-
fully choosing the distance measurement to report, as shown in
Fig. 7. In this figure, denotes the location of the localizing
node, while denotes the position chosen by malicious nodes
to shift the estimate. Each circle is drawn with position reported
by anchor nodes as center and distance measured by localizing
node from corresponding anchor node as radius. The circles in-
tersecting at both locations and correspond to the collinear
anchor nodes as centers and are shown using the dashed line.
The colluding nodes can take advantage of the fact that the mea-
surements reported by the collinear honest nodes are also con-
sistent with their second point of intersection . When nodes
are randomly deployed, the probability that three or more nodes
are exactly collinear is negligible. As such, in the absence of
measurement noise, we then require that for secure
localization. In practice, however, the presence of measurement
noise requires a localization algorithm to equip with some tol-
erance capability. Therefore, being merely close to collinear in
the noisy case can have the inevitable effect to aid the adversary
in the same way as what the exact collinear situation does for
the noise-free case. Since the probability of nodes being close to
collinear is nontrivial, the required lower bound on is consid-
erably larger than . In our experiments, we have observed
that such occurrences of almost collinear nodes with an inter-
section point close to account for a large fraction of the
cases where the secure localization algorithms do not correctly
identify the true position of the node. Because of increase in
the probability of nodes that are collinear, the proposed scheme
can tolerate fewer malicious nodes—about 40% in our study as
shown in Fig. 6(b), for coordinated attack case. Beyond that, the
probability of correctly identifying the location drops sharply.
In LMdS, localization is performed using multiple subsets of

four nodes and the estimated location will be correct as long
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Fig. 8. Diagram representing the basic TDoA protocol.

as one of these subsets contains all innocent nodes. There-
fore, the LMdS algorithm performs moderately better than the
gradient descent and voting algorithms when the percentage of
malicious nodes is higher, although this gain is achieved at the
cost of much higher computational resources. The difference
in localization error between the voting-based scheme and our
scheme can be attributed to resolution accuracy of grid used
in voting scheme and to the step size in the gradient descent
based scheme. Overall, we see a tradeoff between the localiza-
tion accuracy and resource use. Our gradient descent based al-
gorithm requires a significantly less amount of computational
and memory resources, at a cost of slightly higher localization
error for coordinated attacks launched by a high percentage of
colluding malicious nodes.

III. GRADIENT DESCENT APPROACH APPLIED TO

TDoA MEASUREMENTS

In the previous section, we showed that the proposed gradient
descent algorithmwith selective pruning can be used to securely
localize nodes in hostile scenarios. We assumed that a direct
measurement of the distance between the localizing node and
the anchor nodes is available. This distance measurement may
be obtained using ToA of the beacon signals, and requires syn-
chronization between the transmitter and the receiver. A small
synchronization error can cause a large error in the spatial lo-
calization as time is multiplied by the speed of light or sound.
Time difference of arrival (TDoA) is used as one way to miti-
gate these synchronization issues [33], [34].
The setting for obtaining one TDoA measurement is shown

in Fig. 8. In this example, the localizing node wants to obtain
a TDoA measurement with the help of anchor nodes 1 and 2,
which already know their position. Node 2 transmits its posi-
tion coordinates and a timestamp to node 1 and the localizing
node. Node 1 receives the signal from node 2 and forwards it
to the localizing node after including node 1’s own position co-
ordinates. The forwarding delay in this process is assumed to
be known in advance, as it depends on the processing speed at
the node and may be known a priori. In order to take account
of possible minor variations, we model the forwarding delay to
be normally distributed around a knownmean value. In practical
applications, additional delays associated with queueing may be
introduced depending on the routing protocols. These additional
delays can be taken into account by incorporating the queueing
delay distribution into the cost function. The localizing node re-
ceives the signal from nodes 1 and 2 and finds the difference

in the time of arrival of the signal after subtracting the known
mean value of processing time at the forwarding node.
Let the positions of nodes 1, 2, and the localizing node be

, and , respectively. Denote the distances between the
nodes by , and , respectively, as shown in Fig. 8. Let
the time at which the node 2 transmits its position coordinates
to localizing node and node 1 be . Localizing node receives
the signal transmitted directly from node 2 at time and the
forwarded signal through node 1 at time . Then we have

(8)

where is the speed of the signal in the medium. This can be the
speed of light for radio signals or the speed of sound for ultra-
sonic signals. Thus, given the time difference of arrival ,
the localizing node position lies on a hyperbola with foci at
and .

A. Secure Localization Problem for TDoA

With this background on TDoA, we can now set up the secure
localization problem when TDoA measurements are available.
Suppose that we have anchor nodes with known position co-
ordinates, out of which nodes are malicious and launch co-
ordinated attacks. We need to determine the position of an un-
known node using the time difference of arrival method to es-
timate the distance between the localizing node and the anchor
nodes. Each pair of anchor nodes gives rise to one equation of
a hyperbola. If we assume that every pair of anchor nodes is
used to obtain one TDoA measurement, we have measure-
ments to determine the position of the localizing node, which
increases as . In practical resource constrained networks,
obtaining such a large number of measurements and solving the
corresponding equations can consume a lot of resources.
To simplify the problem, we assume that there is one tamper-

proof trusted anchor node in the network (say node 1) that will
be used to help localize the other nodes. Each of the remaining
anchor nodes transmit the beacon signal with the timestamp to
the localizing node. Upon receiving the signal, the trusted node
1 forwards it to the localizing node, which thus obtains one
TDoA measurement. Under this assumption, we have a man-
ageable number of equations for the node location, which
may be solved in practical resource constrained networks. Let

denote the location of the th anchor node. We need to de-
termine the point that satisfies

(9)

where is the TDoA measurement obtained through anchor
node and the trusted node 1 as described in (8). Fig. 9 shows an
example where four anchor nodes are located at , and
, and there are nomalicious nodes or measurement noise. The

hyperbolas correspond to the loci of points that are consistent
with one TDoA measurement. The common intersection of the
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Fig. 9. Intersection of three hyperbolas gives the location of a node when
TDoA is used.

hyperbolas, denoted by point , is the position of the localizing
node.
In the presence of measurement noise alone, (9) can be solved

in the least squares sense by finding the solution to the following
LS equation:

(10)

In the presence of malicious nodes, this LS solution may not be
accurate. The malicious node may collude together to prevent
the accurate localization of other nodes. Based on our assump-
tion that a tamper-proof trusted node is used to help localize the
node, the attacker cannot successfully launch an attack by modi-
fying the timestamp alone. Any changes in the timestamp corre-
sponding to the time of transmission will not affect the distance
measurement, which only depends on the difference in the time
of arrival of the two signals. Instead, the strategy of attacker will
be to modify the transmitted position coordinates of th node to

in an intelligent way. Suppose that the attacker knows the
position of the trusted node 1 and the position of the lo-
calizing node. Based on this knowledge, the attacker can esti-
mate the and -time instants at which the localizing node
receives the direct beacon signal from th node and forwarded
the beacon signal from node 1. Denote by the position
where the attacker wants to shift the estimate. We then have the
following relations:

(11)

(12)

where . The attackers can determine a suitable
value of and for the nodes that are compromised such
that (10) and (11) are satisfied.
Our gradient descent based approach with selective pruning

described in the previous section can be extended to perform se-
cure localization in this case. The algorithm starts by randomly
initializing the LS estimate . At the th step of the iteration,
the gradient of the cost function is evaluated at the cur-
rent estimate , and the estimate is updated by moving it

Fig. 10. Localization accuracy for coordinated attacks by 30% of the nodes
using TDoA measurements.

one step in the direction of the negative of the gradient, denoted
by :

The geometric interpretation of the gradient descent for TDoA
is similar to the previous case for ToA, where at each iteration,
a step in the direction of the negative of the gradient moves the
current estimate of the location towards the intersection of the
hyperbolas. At every iteration, we compute the gradient corre-
sponding to each term in (10) and then sum them up to find
the overall gradient. In the pruning stage, we discard a fraction
of the terms with large gradient magnitude and sum up the re-
maining terms to obtain the gradient direction.
We perform simulations using the same settings as before.

A total of nodes are distributed uniformly in a grid
of size 60 m 60 m. The measurement noise is assumed to be
Gaussian with zero mean and m. Fig. 10 shows the local-
ization error under coordinated attacks by 30% of the nodes. The
-axis represents the distance between the position reported
by the malicious nodes and the true location. The dashed line
represents the localization accuracy using the proposed method,
while the solid line represents the localization accuracy using
the least squares solution. From the figure, we see that the lo-
calization error using our gradient descent algorithm is less than
the error obtained using the least square method under coordi-
nated attacks, although the localization error increases with an
increase in attack distance, , for both approaches. The reason
for this behavior can be explained by examining the probability
of identifying the true location as a function of the percentage of
malicious nodes. From the results shown in Fig. 11 for
m, we see that the probability of converging to the true estimate
under TDoA for our scheme is approximately 10% lower than
that of the ToA case of Fig. 6(b). When the algorithm does not
converge to the correct estimate, it converges close to the posi-
tion reported by the malicious nodes, which corresponds to local
minimum of the cost function and incurs an error that grows
with the strength of the attack. As a result, the average error
increases as the distance of attack, , increases. However, as
compared to using the baseline LS solution, the probability of
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converging to the correct position is 20%–30% higher for the
gradient descent algorithm.
To summarize, in this section and the previous section, we

have described a computationally efficient method for localiza-
tion in static wireless sensor networks in adversarial scenarios
when the distance measurements are obtained using different
techniques such as ToA and TDoA. The localization accuracy
of the proposed method is better than or comparable to that of
existing algorithms for secure localization in static networks. In
the next section, we consider the case of mobile sensor networks
and describe how the gradient descent algorithm can be used for
secure localization in such a case.

IV. SECURE LOCALIZATION FOR MOBILE SENSOR NETWORKS

The localization problem in mobile sensor networks (MSNs),
where the individual nodes are moving, involves determining
the location of each node at a series of time instants. Prior work
that addresses the problem of localization in mobile networks
was reviewed in Section I-A. These prior works assume the
presence of anchor nodes in the network that are used to lo-
calize the mobile nodes. In contrast, we consider in this section
a more challenging case where all the nodes are moving and the
network may not have any anchor nodes. Our proposed algo-
rithm operates in a fully distributed manner so that each node
can localize itself, without the need for centralized processing.
Many applications involving mobile sensors rely on the rela-

tive positions of the nodes. The knowledge of the absolute loca-
tions may not always be critical for the functioning of the net-
work. Instead, a map of relative locations that preserves the dis-
tances and neighborhood relations between the nodes is usually
sufficient. Examples include distributed control algorithms such
as leader-following [9], and direction-based routing algorithms
[35], [36]. Even in applications where the absolute locations of
the nodes need to be determined, the relative map can be used
as an intermediate step in the localization process. As it pre-
serves pairwise distances, the set of relative locations is only a
possible rotation and translation of the absolute locations. Once
the set of relative positions is obtained, the rotation and transla-
tion parameters can be determined with the help of the absolute
known positions of any three nodes, and thus the absolute loca-
tions of the remaining nodes [30] are obtained. In this paper, we
only consider the problem of determining the relative locations
of the nodes in a mobile sensor network at each time instant. To
the best of our knowledge, this is the first work addressing the
secure localization of mobile sensor networks in the absence of
anchor nodes.

A. Problem Formulation

Denote the location of the th node in the network at time in-
stant by , and let be
the set of node positions. Let be
the distance between nodes and at time . At a given instant,
each node obtains an estimate of ,
using ToA or other distance estimation methods along with the
current estimate of node ’s location. The problem of estimating
the relative location map at time instant involves finding a set
of location estimates such

that the inter-node distances are ap-
proximately the same as the true inter-node distances . The
process of obtaining such a relative map can be considered as an
embedding of the locations of the nodes into two-dimensional
space.
Multidimensional scaling (MDS) is a classic approach to em-

bedding higher dimensional data into a lower dimensional space
[37]. Given a matrix of dissimilarities or distance metrics be-
tween objects, MDS finds a set of locations in a specified high-
dimensional space that best approximates the input distance ma-
trix. MDS has been used in information visualization and data
analysis as a dimensionality reduction technique in combina-
tion with other tools [38], and solve the localization problem in
static sensor networks [30]. This approach has a high computa-
tional complexity due to the use of singular value decomposition
(SVD) whose complexity is , where is the number of
nodes in the network. MDS algorithm requires centralized pro-
cessing, as it needs knowledge of inter-node distances between
all the nodes. We adapt the computationally efficient gradient
descent approach described in previous sections to find a rela-
tive location map of the entire network in an iterative manner.
To apply this algorithm in a distributed manner, each node needs
to iteratively obtain and update the current estimates of the rel-
ative position of other nodes and its own distance from other
nodes.

B. Attack Model

Malicious nodes independently falsify the timestamp of their
signals to provide erroneous information to the other nodes. We
model this scenario by adding a random value uniformly
distributed in and constant over time, to the distance
estimate provided to the th localizing node by the th node.
A similar attack model was used in [24] to model noncoordi-
nated attacks in mobile sensor networks. The distance estimate
obtained by localizing node from node at time instant can
then be written as

if node is malicious
otherwise

where is the actual distance between the nodes and
and is the measurement noise.
The above attack model corresponds to the noncoordinated

attacks. Launching coordinated attacks in mobile sensor net-
works is not as straightforward as in static sensor networks.
In order to successfully implement fully coordinated attacks to
change the estimated position/path of the localizing node to a
desired location/path chosen by an adversary, each malicious
node needs to have an exact estimate of the position and the
speed of all the remaining nodes at each time instant to con-
sistently mislead them. If the position reported at the next time
instant is not consistent with the motion of the localizing node,
the attacks from malicious nodes can be easily detected by the
localizing node using velocity constraints. As a result, an adver-
sary needs significantly more information to successfully launch
a coordinated attack in a mobile sensor network. We only ex-
amine noncoordinated attacks in the case of mobile sensor net-
works in this paper. The problem of launching smart attacks in
mobile sensor networks will be considered in future work.
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Fig. 11. Probability of converging to the correct estimate under coordinated
attacks for TDoA, m.

C. Gradient Descent-Based Approach

For the case of localization in static networks discussed in
Section II, the localizing node obtain a measurement of its dis-
tance from each of the anchor nodes. The gradient descent ap-
proach with selective pruning is then used to find the node po-
sition. In the case of mobile sensor networks without anchor
nodes, as all the nodes are moving, each node obtains an esti-
mate of its distance from every other node at each time instant.
We modify the gradient descent algorithm to be applicable in
this setting as described next.
Each node randomly initializes its estimate for the cur-

rent position . At each subsequent time instant , the
th node obtains measurements for

from the remaining nodes, and formu-
lates a least squares problem similar to (1). The cost function
for the th node at time instant is given by

(13)

Node evaluates the gradient of the cost function in (13) at
the estimate of its current position , and then updates
the estimate by adding one step in the direction of the negative
of the gradient

After the magnitude of the gradient falls below a threshold, the
selection stage of the algorithm is activated by pruning a frac-
tion of the terms in the cost function that have large gradient
magnitudes. As we shall see next through simulations, the esti-
mates of the relative positions converge to the correct solution,
and we can accurately track the positions of the nodes as they
move.

Fig. 12. Localization error, , as a function of time for estimating the rela-
tive locations in MSNs when 50% nodes are malicious.

D. Simulation Results

In this subsection, we demonstrate experimentally the accu-
racy of the proposed method for localization in mobile sensor
networks under noncoordinated attacks. Thirty sensors are
randomly deployed in a 60 m 60 m area. The velocity of
the nodes at each instant is a random variable with and
components and , uniformly distributed on .
This mobility model is similar to the random way-point model
used commonly for modeling mobile and ad-hoc networks [22],
[39]. The measurement noise, , is assumed to be additive
Gaussian with mean 0 and m. The maximum error
introduced by a malicious node into the distance measurements
is m. In the selection stage of the gradient descent
algorithm, we prune 50% of the force vectors as in the previous
case of static sensor networks.
The estimation accuracy of the estimated relative location

map is measured by comparing the actual inter-node dis-
tances with estimated inter-node distances , where

. The localization error is
defined as the sum of the absolute difference between
and corresponding at each time instant for all and :

(14)

Low value of implies that the algorithm can accurately es-
timate the inter-node distances and can provide a relative loca-
tion map that satisfies the inter-node distance constraints. The
estimated relative location map can then be used to find the ab-
solute locations of all the nodes in the network if true locations
of three nodes are known.
We first evaluate the accuracy of the gradient descent algo-

rithm for a fixed maximum velocity, m per unit time.
A constant step size of is
used, which is approximately the average distance that a node
can move in unit time. The plot of error as a function of
time when 50% of the nodes are malicious is shown in Fig. 12.
The dashed line represents the error using the proposed gradient
descent approach, while the solid line represents the error when
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Fig. 13. Effect of velocity on the error in estimating the map of relative
locations.

the selection stage of the algorithm is not used. The latter ap-
proach is basically the LS solution. We can see that the value
of is quite high during initialization of the algorithm as
each node initializes its position estimate randomly. The local-
ization error decreases during subsequent time instants as the
algorithm iteratively updates the estimate of the position. Ap-
plying the second stage of the algorithm to prune out the obser-
vations due to malicious nodes further reduces the average error
to less than 1.5 m.
We also examine the effect of the node velocity on the lo-

calization accuracy. We fix the value of to 20 m and de-
termine the error after convergence for different maximum ve-
locities . Fig. 13 compares the localization accuracy of the
gradient descent algorithm with and without pruning as a func-
tion of the velocity. The step size of the gradient descent al-
gorithm is chosen to be as described previously.
The point corresponding to denotes the special case
of determining relative location map in the static network in the
absence of any anchor node. A small step size is used to up-
date the estimates at each iteration for the case of .
From this figure, we observe that as long as the velocity is small,
the error in estimating the relative locations remains small. As
the node velocity increases, the localization error also increases.
The increase in localization error is more in the gradient descent
approach with pruning than that for without pruning. At high ve-
locities, each node can move quite far from its previous position
and the gradient descent approach may not be able to track the
position of node accurately. Applyingmultiple iterations in each
time unit can alleviate this problem at the expense of increased
computational complexity.

V. CONCLUSION

In this paper, we propose a secure and computational effi-
cient algorithm for localization in wireless sensor networks. The
proposed algorithm utilizes a gradient descent approach com-
bined with a pruning stage that filters out inconsistent mea-
surements to determine the location of nodes. We demonstrated
the effectiveness of the algorithm when distance estimates be-
tween anchor nodes and non-anchor nodes are obtained using

time of arrival and time difference of arrival measurements.
Simulation results show that under coordinated attacks the pro-
posed method has localization accuracy comparable to that of
existing methods. For noncoordinated attacks, we showed an
improvement by approximately 1 m in localization accuracy
for a deployment region of size 60 m 60 m, in the presence
of Gaussian measurement noise when more than 50% nodes
are compromised. Computation requirements and run time in
the proposed method was shown to be lower than for existing
methods. We also demonstrated that the algorithm can be used
for localization in mobile sensor networks with malicious nodes
to find the relative location map of each node in the network
even in the absence of anchor nodes. The proposed method can
track the mobile nodes with small localization error when nodes
are moving slowly. The average localization error in the rela-
tive location map was less than 1.5 m for a deployment region
of size 60 m 60 m when up to 50% of the nodes are malicious,
and nodes are moving with a maximum velocity of 3 meters per
second.
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