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ABSTRACT

Many existing works related to lossy-to-lossless image compression
are based on the lifting concept. However, it has been observed that
the separable lifting scheme structure presents some limitations be-
cause of the separable processing performed along the image lines
and columns. In this paper, we propose to use a 2D non separable
lifting scheme decomposition that enables progressive reconstruc-
tion and exact decoding of images. More precisely, we focus on the
optimization of all the involved decomposition operators. In this re-
spect, we design the prediction filters by minimizing the variance of
the detail signals. Concerning the update filters, we propose a new
optimization criterion which aims at reducing the inherent aliasing
artefacts. Simulations carried out on still and stereo images show the
benefits which can be drawn from the proposed optimization of the
lifting operators.

Index Terms— lossy-to-lossless image compression, lifting
schemes, separable transforms, non separable transforms, adaptive
transforms, multiresolution analysis, stereo coding.

1. INTRODUCTION

The discrete wavelet transform has been studied and applied exten-
sively in many image processing fields such as denoising [1] and
compression [2]. In this respect, the second generation of wavelets
provides very efficient transforms, based on the concept of Lifting
Scheme (LS) developed by Sweldens [3]. It was shown that interest-
ing properties are offered by such structures. Indeed, lifting schemes
are suitable tools for scalable reconstruction, which is a key issue
for telebrowsing applications. Besides, they guarantee a lossy-to-
lossless reconstruction required in some specific applications such as
medical imaging for which any distortion in the decoded image may
lead to an erroneous interpretation of the image [4, 5]. A generic
LS applied to a 1D signal consists of three modules referred as split,
predict and update. In the first step, the even samples are separated
from the odd ones. Then, each sample of one of the two resulting
subsets (say the even one) is predicted from the odd samples and a
prediction error or detail coefficient is computed. Finally, the update
step generates a coarser approximation of the initial signal thanks to
a smoothing of the odd samples using the detail coefficients. Gen-
erally, for 2D signals, the LS is handled in a separable way by cas-
cading 1D LS along the horizontal direction, then along the vertical
one. However, this separate processing limits the number of freedom
degrees of the involved operators [6]. Furthermore, separable LS is
not efficient to cope with characteristics of edges which are neither

horizontal nor vertical. In addition to still monocular images, LS
have been extensively used for stereo image coding [7, 8]. Indeed,
it can be noticed that most of the existing works rely on disparity
compensation techniques. The first step in this approach consists
of estimating the disparity map. Then, one image is considered as
a reference image and the other is predicted in order to generate a
prediction error referred to as a residual image. Finally, the dispar-
ity field, the reference image and the residual one are encoded. In
this context, Moellenhoff and Maier [9] analyzed the characteristics
of the residual image and proved that such images have properties
different from natural images. This suggests that transforms work-
ing well for natural images may not be as well-suited for residual
images. These shortcomings have motivated the development of 2D
Non Separable LS (NSLS) in order to offer more flexibility in the
design of the prediction filter. Indeed, instead of using samples from
the same rows (resp. columns) while processing the image along
the lines (resp. columns), 2D NSLS provide more choices in the
selection of the samples by using horizontal, vertical and oblique di-
rections [6]. Furthermore, operators in an NSLS can satisfy some
appealing properties (e.g. orthogonality) unlike those related to a
separable LS [10]. The orthogonality property may be interesting
in image coding since the mean square error in the wavelet domain
and in the spatial domain are the same. Also, in [11], it was shown
that 2D NSLS structures outperform separable ones due to the reduc-
tion of the rounding effects. Moreover, the performance of these LS
can be improved by exploiting the characteristics of the input image.
However, to the best of our knowledge, most existing works have
focused on the optimization of the prediction operators. In this con-
text, Gerek and al. [6] proposed to consider three direction angles
of prediction (0◦, 45◦ and 135◦) and they selected the orientation
which leads to the minimum prediction error. In [12], the authors
considered a non separable quincunx LS and proposed to optimize
the predictors based on an entropy criterion. However, it can be no-
ticed that there are few works which have discussed the problem of
the update filter. Among these works, in [13], the update operator
of a separable LS is adaptively computed thanks to a non linear de-
cision rule using the local gradient information. Another alternative
is to adapt the update so that the reconstruction error is minimized
when the detail coefficients are canceled [14]. In this paper, we aim
at fully exploiting the flexibility of a NSLS through an optimization
of all the involved operators. One of the main contributions of this
work relies on the optimization of the update filter by using a crite-
rion which allows us to reduce the aliasing effects. The outline of
the paper is as follows. In Section 2, the 2D NSLS and its link with
some existing 1D LS structures are presented. The novel optimiza-



tion method of both the prediction and update filters is discussed in
Section 3. Finally, in Section 4, experimental results are given and
some conclusions are drawn in Section 5.

2. 2D NON SEPARABLE LS STRUCTURE

2.1. Principle

Let x denote the digital image to be coded. At each resolution
level j and each pixel location (m, n), the approximation coefficient
xj(m, n) has 4 polyphase components x0,j(m, n) = xj(2m, 2n),
x1,j(m, n) = xj(2m, 2n + 1), x2,j(m, n) = xj(2m + 1, 2n), and
x3,j(m, n) = xj(2m + 1, 2n + 1). Without loss of generality, we
assume that the polyphase components are the input coefficients of
the 2D NSLS depicted in Fig. 1, where P
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j , P(LH)
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j and

Uj represent the four analysis filters employed to generate the detail
coefficients: x
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Fig. 1. NSLS decomposition structure.

in the 2D z-transform domain.1 Indeed, it is straightforward to show
that the z-transforms of the output coefficients are as follows:

X
(HH)
j+1 (z1, z2) = X3,j(z1, z2)− bP (HH)
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1The z-transform of a signal x will be denoted in capital letters by X .

where ∀ i ∈ {0, 1, 2} and o ∈ {HH, HL, LH},

P
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i,j
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The set P(o)
i,j (resp. U (i)

j ) and the coefficients p
(o)
i,j (k, l) (resp.

u
(i)
j (k, l)) denote the support and the weights of the three predic-

tion filters (resp. of the update filter). Once the considered NSLS
structure has been defined, it may appear instructive to see how it is
related to some commonly used 1D LS structures.

2.2. Links with conventional 1D LS

It can be checked that the conventional 5/3 transform and the Haar
one are particular cases of the structure illustrated in Fig. 1. For ex-
ample, consider the 5/3 transform which was selected for the lossless
mode of the JPEG2000 standard [5]. After applying the 5/3 decom-
position to the lines then to the columns, we deduce that
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This shows that some widely used separable LS can thus be put un-
der the form of a 2D-NSLS. This will be shown to facilitate the
derivation of adaptive extensions of the associated operators. Indeed,
in a coding framework, the compactness of any LS-based multireso-
lution representation clearly depends on the choice of the prediction
and update operators. In the next section, we address the issue of an
optimal design of the NSLS operators.

3. PROPOSED OPTIMIZATION METHOD

3.1. Optimization of the predictors

As the detail coefficients are defined as prediction errors, the predic-
tion operators can be optimized so as to minimize the variance of the
coefficients at each resolution level. If the rounding operators are
omitted, it is readily shown that the minimum variance predictors
must satisfy the well-known Yule-Walker equations. For example,
for the prediction vector P

(HH)
j , the normal equations read

E[x̃j(m, n)x̃j(m, n)>]P
(HH)
j = E[x3,j(m, n)x̃j(m, n)] (11)

where
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p
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,



• x̃j(m, n) = (x0,j(m, n),x1,j(m, n),x2,j(m, n)) is the refer-

ence vector with xi,j(m, n) =
(
xi,j(m − k, n − l)

)
(k,l)∈P(HH)

i,j

.

The other optimal prediction filters P
(HL)
j and P

(LH)
j are obtained

in a similar way.

3.2. Optimization of the update operator

Firstly, it can be noticed that the transfer function of the low-pass fil-
ter relating xj to the undecimated version of xj+1 can be expressed
as

Fj(z1, z2) = 1+
∑
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where A
(i)
j (z1, z2) is a transfer function which depends on the pre-

diction coefficients. Since Fj aims at computing a smooth version of
the original image, we propose to design the update filter in order to
reduce the aliasing effects. More precisely, we adopt a new criterion
J which accounts for the difference between the output of the Fj

filter and the output of an ideal filter

J (uj) =

∫ +π

−π

∣∣∣Fj(e
ıω1 , eıω2)

−H(eıω1 , eıω2)
∣∣∣
2

Sxj (ω1, ω2)dω1dω2

(12)

where Sxj is the power spectrum density of xj and H denotes the
transfer function of the ideal low-pass filter (h will subsequently des-
ignate its impulse response). It must be emphasized that this crite-
rion exploits the characteristics of the input signal, so making the
method adaptive. In this respect, it departs from criteria classically
employed for filter bank design. By cancelling the gradient of J ,
the optimal update weights should satisfy, for each (k0, l0) ∈ U (i′)

j

and i′ ∈ {0, 1, 2}, the following condition:
∑
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where γxj is the autocorrelation function of the field xj . Conse-
quently, the optimal update weights are solutions of a linear system
of equations. Fig. 2 shows the magnitude of the frequency responses
of the F0 filter for the 5/3 transform, obtained before and after our
optimization method on the residual image generated from the stereo
pair “apple”. It can be clearly seen that the optimal filter is quite dif-
ferent from that obtained when no optimization is performed.

4. EXPERIMENTAL RESULTS

Experiments were firstly carried out on test images by considering
a separable decomposition and its corresponding 2D-NSLS. Then,
the gain related to the optimization of the NSLS operators was eval-
uated.
More precisely, we considered the 5/3 separable transform (denoted
by “DEC-5/3-SEP”) which was found to be a very effective for
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Fig. 2. Frequency responses of the filter F0: (left figure) before
optimization, (right figure) after optimization

lossy-to-lossless image coding [5]. The number of resolution levels
was set to 2. In the following, the corresponding NSLS decom-
position will be designated by “DEC-5/3-NON SEP”. It is worth
recalling that “DEC-5/3-NON SEP” is non adaptive since its un-
derlying operators are given by Equations (7)-(10). The last set of
experiments was devoted to the optimization of the operators by
using the equivalent non separable decomposition, their supports
being preserved.
• First, the prediction filters were optimized while the update filters
were kept. In the following, this method will be designated by
“DEC-5/3-NON SEP-OPT1”.
•The second variant (denoted by “DEC-5/3-NON SEP-OPT2”)
consists of optimizing both the predictor and the update. Hence, we
used the method proposed in the previous section for designing the
update filter.
The performance of the considered methods has been assessed on
still images2 and also on stereo images. Fig. 3 gives the varia-
tions of the PSNR versus the bitrate for the image “straw”. It is
worth pointing out that “DEC-5/3-NON SEP-OPT2” outperforms
the “DEC-5/3-NON SEP-OPT1”by 0.1-0.35 dB. Fig. 5 displays
a zoom applied on the reconstructed images at 0.6 bpp. It can be
observed that the optimization of the prediction and update filters
improves the quality of reconstruction. In addition, we have tested
these methods in a lossless coding context and the related final bi-
trates are given in Tab. 1. Slight improvements are obtained when
our optimization method is employed for a lossless coding scheme.
The second part of the experiments is concerned with stereo images.
For this reason, we also proposed to evaluate our method for residual
images. Fig. 4 illustrates the evolution of the PSNR versus the bi-
trate of the residual image generated from the “apple” stereo image
downloaded from 3. An improvement of 0.1-0.4 dB is obtained by
optimizing the update filter. The gain becomes more important (up
to 0.65 dB) when compared with the non-optimized 5/3 transform.
This confirms the effectiveness of our method in terms of quality of
reconstruction.

Table 1. Performance of the lossless decompositions in terms of
bitrate (bpp) using JPEG2000.

Image DEC-5/3- DEC-5/3- DEC-5/3- DEC-5/3-
SEP NONSEP NONSEP- NONSEP-

OPT1 OPT2
spot5-1 3.775 3.777 3.727 3.725
spot5-2 3.780 3.781 3.728 3.727
straw 6.346 6.349 6.343 6.341

2taken from the URL http://sipi.usc.edu/database
3http://vasc.ri.cmu.edu/idb/html/stereo/index.html



(a) Original image (b) PSNR=23.67 dB, SSIM=0.808 (c) PSNR=24.03 dB, SSIM=0.824 (d) PSNR=24.34 dB, SSIM=0.826

Fig. 5. Zoom applied on the reconstructed “straw” image using (b) “DEC-5/3-SEP” (c) “DEC-5/3-NON SEP-OPT1” (d) “DEC-5/3-NON
SEP-OPT2”.
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Fig. 3. PSNR (in dB) versus the bitrate (bpp) after JPEG2000 pro-
gressive encoding for the “straw” image.

5. CONCLUSIONS

In this paper, we have exploited the flexibility offered by non sepa-
rable lifting schemes to perform their optimization. A new criterion
has been presented for the optimization of the update filter in this
context. The proposed method adapts the filter to the contents of
the input image while ensuring perfect reconstruction. Experimen-
tal results, carried out on still images and residual images of stereo
pairs, have illustrated the benefits of optimizing both the prediction
and the update filters. In future work, we plan to extend this opti-
mization method to the vector lifting scheme recently presented for
stereo image coding [7].
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