
HAL Id: hal-00423434
https://hal.science/hal-00423434

Submitted on 9 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing LNS using filtering units of GPUs
Mark G. Arnold, David Defour, Caroline Collange, David Defour Eliaus

To cite this version:
Mark G. Arnold, David Defour, Caroline Collange, David Defour Eliaus. Implementing LNS using fil-
tering units of GPUs. International Conference on Acoustics Speech and Signal Processing (ICASSP),
Mar 2010, Dallas, TX, United States. pp.1542–1545, �10.1109/ICASSP.2010.5495516�. �hal-00423434�

https://hal.science/hal-00423434
https://hal.archives-ouvertes.fr

IMPLEMENTING LNS USING FILTERING UNITS OF GPUS

Mark Arnold

Department of Computer Science

and Engineering,

Lehigh University
markgarnold@yahoo.com

Caroline Collange, David Defour

ELIAUS,

Université de Perpignan,

66860 Perpignan, France
david.defour@univ-perp.fr

ABSTRACT

Current GPUs offer specialized graphics hardware in addi-

tion to generic floating-point processing units. We propose

a method which reuses specialized texture filtering units to

perform piecewise polynomial evaluations, which helps ac-

celerate LNS computations and can be used in combination

with hardware-based transcendental functions.

Index Terms— Graphics processing units, logarithmic

number system, texture filtering, polynomial approximation

1. INTRODUCTION

While the primary design goal of GPUs is efficient execu-

tion of graphics rendering, the massive parallelism available

in these chips has opened up lately the possibility using them

for more general signal-processing applications.

Current GPUs are mostly vector computers which focus

on single-precision arithmetic, but they also offer graphics-

related specialized units in hardware, such as texture filtering

units and transcendental evaluation units. Development en-

vironments such as NVIDIA CUDA make it possible to pro-

gram GPUs for various non-graphics applications. However,

few such applications make use of texture filtering. We pro-

pose a novel approach to take advantage of these otherwise-

idle texture filtering units to evaluate functions, which can be

used to implement the Logarithmic Number System (LNS)

on GPUs. In this paper we will consider the CUDA frame-

work and the GT200 processor from NVIDIA, although our

approach is generalizable to other GPUs.

We first give an overview of the GT200 GPU and LNS in

the rest of this section, then present the proposed scheme in

section 2, and discuss performance and accuracy in section 3.

1.1. Computational units in modern GPU

Figure 1 describes the hardware organization of computa-

tional units in the GT200 processor. The first level of the

computational hierarchy corresponds to the Thread Processor

Cluster (TPC). Up to 10 TPC are embedded in this GPU.

Each TPC is made of one load/store unit (not represented on

the figure), 1 texture unit and 3 multiprocessors.

Thread Processor Cluster (TPC)

Multiprocessor

Shared

Memory
SP

Texture Units

SP

SP

SP

SFU R
e

g
is

te
r

F
il

e SP

SP

SP

SP

SFU

Multiprocessor

Shared

Memory
SP

SP

SP

SP

SFU R
e

g
is

te
r

F
il

e SP

SP

SP

SP

SFU

Multiprocessor

Shared

Memory
SP

SP

SP

SP

SFU R
e

g
is

te
r

F
il

e SP

SP

SP

SP

SFU

TF TF TF TF TF TF TF TF

TA TA TA TA

Texture L1 Cache

Fig. 1. Block diagram of one thread processor cluster of a

NVIDIA GT200.

1.1.1. Multiprocessor units

Each multiprocessor embeds three kinds of vector units. Eight

SP units perform single-precision multiply-and-adds. Two

special function units (SFUs) compute reciprocals, reciprocal

square roots, base-2 logarithms and exponentials, sines and

cosines. Finally, one double-precision unit computes fused

multiply-and-adds. All units are optimized for throughput and

are accessed through 32-way SIMD instructions.

1.1.2. Texture Units

The texture unit or filtering unit is dedicated to accelerate

memory accesses specific to graphics operations with uni-,

two- or three-dimensional spatial locality. This unit is located

in a different clock domain than the rest of the processor and

is composed of 4 Texture Address units (TA) and 8 Texture

Filtering units (TF). Spatial locality is exploited thanks to a

dedicated 24 KB read-only texture cache.

The 4 TAs and 8 TFs are used to access texture elements

called texels and optionally apply filtering (linear, bilinear,

and anisotropic). For example, a bilinear filter can be applied

to eight 8-bit texels per clock or four FP16 or two FP32 per

clock.

1.1.3. Bi-Linear filtering

In graphics languages as well as in CUDA, a texture object

has several attributes. A texture can be declared as a uni-,

two- or three-dimensional array that can be accessed with

one, two or three texture coordinates. Fetched data can be

8-bit, 16-bit integer, 32 bit floating point numbers or a vector

made of 1, 2 or 4 elements. The programmer can also choose

between two addressing mode to access the texture by speci-

fying whether texture coordinates are normalized (between 0

and 1) or not. Normalized textures are useful when the ap-

plication requires texture addresses to be independent on the

texture dimensions.

When a texture is configured to return floating-point

data, the programmer can define the filtering mode to apply:

nearest-point sampling or linear filtering. Linear filtering is a

low-precision interpolation between neighboring texture data.

When interpolation in enabled, texels surrounding a texture

fetch location are read and used to interpolate values based on

where the texture coordinates fall between the texels. Linear

interpolation is performed for 1D, bilinear interpolation for

2D and trilinear for 3D texture.

i i+1

j+1

j

i

x

y

α

β

Fig. 2. Bilinear filtering of a two dimensional texture.

Let the two-dimensional texture T represent a N × M
array of texels fetched using normalized floating-point texture

coordinates x and y such that x ∈ [0, N] and y ∈ [0, M]. The

filtering unit returns the value V such that:

V = (1 − α) · (1 − β) · T [i, j]
+(1 − α) · β · T [i + 1, j]
+α · (1 − β) · T [i, j + 1]
+α · β · T [i + 1, j + 1]

(1)

where

i = floor(x − 0.5) and α = frac(x − 0.5)

j = floor(y − 0.5) and β = frac(y − 0.5)

It should be noted that α and β are manipulated in a fixed-

point format with an 8-bit fractional part on NVIDIA GPUs.

The hardwired linear texture filter is such that internal com-

putations are performed with application-tailored precision,

which limits the accuracy to the least significant bit of the

texture data format.

1.2. Logarithmic Number System

The Logarithmic Number System represents a number, X , by

its base-b logarithm, x = logb |X|, rather than the exponent

and mantissa used in FP systems. Normally x is manipulated

in fixed-point format giving precision and range like that of

a similar FP system. In this paper, x itself may be stored

in FP format, making the range of the LNS so astronomical

that the problems of under/overflow disappear. For algorithms

involving only positive real numbers, x by itself is sufficient

to represent X; algorithms needing X < 0 require a sign

bit like that in FP [1]. Zero is treated specially, and often in

signal processing may be ignored. Products, quotients, roots

and powers are trivial in LNS; sums and differences involve

the functions sb(x) = logb(1+bx) and db(x) = logb |1−bx|.
For example, since Z + Y = Y (1 + Z/Y), LNS computes

the sum as log(Z + Y) = y + sb(z − y). This approach

has been generalized to complex values [2] using logcos(θ),
logsin(θ) and tan−1(bx) in addition to sb and db. Complex

LNS (CLNS) has been shown to be an efficient representation

for the Fast Fourier Transform (FFT) [3].

Before the widespread adoption of DSP chips, LNS of-

fered attractive VLSI implementations for early signal pro-

cessing hardware with limited-precision lookup of sb and db

from ROMs. A bibliography [4] lists around twenty papers

from that era appearing in ICASSP and the Transactions on

signal processing using LNS. Stouraitis [5] gives a good sum-

mary of the state of the art in LNS for signal processing in

the 1980s. Later, LNS found other niche applications, such

as the massively-parallel N-body computation that won the

Gordon Bell prize in 1999 [6]. LNS continues to be an attrac-

tive alternative number system for FPGAs [7] because VHDL

libraries [8, 9] are now available that implement polynomial

approximations to sb and db, and LNS is attractive for com-

plex signal-processing algorithms [10]. LNS is common in

computing Hidden Markov Models (HMMs) [11], even on

conventional CPUs, because a summation of exponentials is

easier to compute in LNS than FP.

With the massive FP hardware available on GPUs, im-

plementing LNS may seem unnecessary, but like all chip

sets, NVIDIA chips have fixed resources. In their original

intent for accelerating graphics, the designers at NVIDIA

felt it worthwhile to commit silicon to texture interpolation,

hardware that typically goes unused in a GPGPU signal-

processing application. This paper considers using the texture

hardware to approximate sb and related functions that imple-

ment either real or complex LNS for portions of applications,

like HMM or N-body, where LNS has proven to be useful

even in the presence of FP hardware, and thereby improve

throughput using LNS format. The architectural complexity

of GPUs make it difficult to predict when such LNS will

benefit a particular application; disclosing our proposed tech-

nique gives GPGPU programmers the option to experiment

with LNS.

2. PROPOSED METHOD

We want to evaluate f(x), for instance sb or db. We assume

x ∈ [0, 1] is in IEEE-754 single precision format. There exist

several techniques to evaluate a function on a given interval.

Due to the presence of filtering on GPUs, spline and B-Spline

are very common. Sigg et al. described in [12] how to exe-

cute fast third order texture filtering while taking advantage of

bilinear filtering. Another technique consists in approximat-

ing a function by one or several polynomials evaluated with

SP units. The main advantage of this technique is that it is

very accurate as every operation is done using floating-point

arithmetic. However, it consumes computational resources to

perform the higher-order interpolation.

2.1. Order-2 polynomial approximation

The proposed method consists in performing polynomial

evaluation inside the texture units, whenever low input preci-

sion with high output accuracy is necessary. We propose to

approximate f(x) with a piecewise degree 2 polynomial ap-

proximation on [0, 1] with k polynomials. Let Pw be the poly-

nomial used to approximate f(x) on [w.2−k, (w + 1).2−k]:

Pw(x) = a0 + a1 · x + a2 · x
2 (2)

The novelty of this methods lies in setting the correct pa-

rameters in the texture T and the address used to fetch data

such that equation 1 representing a bilinear filtering opera-

tion, is similar to the evaluation of the polynomials Pw.

If we perform a texture fetch at coordinates

(x + 0.5, (x − floor(x)) + 0.5) then (1) is equivalent to:

V = (1 − γ)2 · T [i, 0] + (γ − γ2) · T [i + 1, 0]
+(γ − γ2) · T [i, 1] + γ2 · T [i + 1, 1]

(3)

with γ = frac(x), i = floor(x)
Now, let us focus on texture coefficient such that the tex-

ture T store T [i, 0] = a0, T [i + 1, 0] + T [i, 1] = 2 · a0 + a1

and T [i + 1, 1] = a0 + a1 + a2. We have:

V = (1 − γ)2.a0 + (γ − γ2).(2.a0 + a1)
+γ2.a0 + a1 + a2

= a0 + a1.γ + a2.γ
2

(4)

Therefore T [i, 0], T [i + 1, 0], T [i, 1] and T [i + 1, 1] are

used to store the coefficients of one polynomial. In order to

store the coefficients of k polynomial approximations of f(x)
on k interval, the 4.k coefficients will be stored on a 2.k × 2
texture. In that case, fetch will be performed at the coordi-

nates illustrated by this CUDA code:

d e v i c e f l o a t t e x t e v a l d e g 2 (f l o a t x , i n t
k) {

x = x ∗ k ;
f l o a t xe = f l o o r (x) ;
f l o a t xf = x − xe + . 5 f ;

re turn tex2D (texRef , (2 . 0 f ∗xe) + xf , x f) ;
}

2.2. Discussion

Even though texture units have their own texture address unit,

polynomial coefficients are stored in a way that requests some

adjustment performed with the help of SP units. However

with this technique, the execution cost of the evaluation of one

function at x is almost equivalent to the evaluation cost of 4

completely different functions at the point x thanks to texture

filtering units that works either on one floating point number

or a vector of up to 4 floating-point numbers. In addition, one

may observe that the address shifting by 0.5 can be avoided by

including this bias into the polynomial approximation rather

than including it in address calculations.

3. RESULTS AND VALIDATION

We implemented the degree-2 method described above, us-

ing the Sollya tool to generate optimized minimax polyno-

mials with single-precision coefficients [13]. For comparison

purposes, we also implemented an order-1 method that uses

only linear texture filtering, a computation that takes advan-

tage of the hardware-based exp and log in the SFU, and a

direct polynomial approximation evaluated using the Horner

scheme, also generated using Sollya.

Figure 3 describes the worst-case error on the sb function

for the methods implemented. We consider an input precision

f such that k = 2f−8, so the 8-bit quantized fractions of

coordinates γ are exact.

We remark that storing 64 segments is necessary to pro-

vide 23 bits of output accuracy. Such storage requirements

are low enough that coefficients can all fit inside the texture

cache.

We evaluated the performance of each method, and com-

binations of them, to evaluate either the sb function or both

sb and db at the same point on a GeForce GTX 280 GPU. Re-

sults are normalized and expressed in shader clock cycles per

warp, rounded to the nearest half-cycle and presented in Table

1.

When using hardware transcendentals to compute both sb

and db as log
2
(1 ± 2x), compiler optimizations enable the

common 2x calculation to be computed only once. Though

order-2 texture interpolation provides no benefit when used

by itself or to evaluate single functions, it increases the com-

putation throughput of sb and db when used in combination

with the SFU units.

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

 1 2 4 8 16 32 64 128

lo
g 2

(e
rr

or
)

k

Order-1
Order-2

HW Transcendentals
Horner degree 5

Fig. 3. Comparison of the worst-case error of the proposed

methods on the sb function, with k = 2f−8.

Table 1. Performance comparison of the proposed methods

and other implementations on a GeForce GTX 280, in clock

cycles.

Method sb sb and db

Order-1 42.5 42.5

Order-2 49.0 49.0

Order-3 49.5 49.5

Hardware transcendentals 32.0 33.0

Horner degree 5 35.0 44.0

Order-2 + HW transcendentals 46.0 52.5

2× HW transcendentals 40.0 56.0

4. CONCLUSION

We presented a scheme that leverages the specialized texture-

filtering units on GPUs to perform function evaluation, en-

abling a higher throughput for the functions that form the ba-

sic blocks of LNS. Other applications that require function

approximation with a high output accuracy for a low input

precision could also be accelerated.

The most prominent obstacle for accurate evaluation be-

ing the quantization of the inputs of the filtering unit, we make

a case for the exposure of the hardware attribute interpolation

unit in the CUDA environment. Direct access to the attribute

interpolator, which does not suffer from the accuracy limita-

tions of the filtering unit, would allow accurate evaluation of

arbitrary functions, as already implemented in hardware for a

limited set of functions [14].

5. REFERENCES

[1] E.E. Swartzlander et al., “Sign/logarithm arithmetic for

FFT implementation,” IEEE Transactions on Comput-

ers, vol. C-32, pp. 526–534, 1983.

[2] M. G. Arnold and C. Collange, “A dual-purpose re-

al/complex logarithmic number system ALU,” in 19th
IEEE Symposium on Computer Arithmetic, 2009, p.
15–24.

[3] M. Arnold et al., “Fast fourier transforms using the com-

plex logarithm number system,” J. VLSI Signal Proc.,
vol. 33, pp. 325–335, 2003.

[4] ,” www.xlnsresearch.com.

[5] T. Stouraitis, Logarithmic Number System Theory,

Analysis, and Design, Ph.D. thesis, Univ. of Florida,

Gainesville, 1986.

[6] J. Makino and M. Taiji, Scientific Simulations with
Special-Purpose Computers: The GRAPE Systems, John
Wiley & Son Ltd., 1998.

[7] C. Collange, F. de Dinechin, and J. Detrey, “Floating
point or LNS: Choosing the right arithmetic on an ap-

plication basis,” in EuroMicro Digital System Design
DSD, 2006, pp. 197–203.

[8] J. Detrey and F. de Dinechin, “A VHDL library of LNS
operators,” in 37th Asilomar Conference on Signals,
Systems, and Computers, Nov 2003, vol. 2, pp. 2227–

2231, www.ens-lyon.fr/LIP/Arenaire.

[9] P. Vouzis, C. Collange, and M. G. Arnold, “LNS subtrac-
tion using novel cotransformation and/or
interpolation,” in IEEE 18th International Conference
on Application-specific Systems, Architectures and
Processors, 2007, pp. 107–114.

[10] F. Albu et al., “Pipelined implementations of the a
priori error-feedback LSL algorithm using logarithmic
number system,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2002, vol. 3,
pp. 2681–2684.

[11] S. Young et al., The HTK Book (for HTK Version
3.4.1), Cambridge University Engineering Dept., 2009,
http://htk.eng.cam.ac.uk/.

[12] Matt Pharr, Ed., GPUGems 2 : Programming Tech-

niques for High-Performance Graphics and General-

Purpose Computation, Addison-Wesley, 2005.

[13] N. Brisebarre and S. Chevillard, “Efficient polynomial
L-∞ approximations,” in 18th IEEE Symposium on
Computer Arithmetic ARITH ’07, June 2007, pp. 169–
176.

[14] Stuart F. Oberman and Michael Siu, “A high-

performance area-efficient multifunction interpolator,”

in 17th IEEE Symposium on Computer Arithmetic, Ko-

ren and Kornerup, Eds., Los Alamitos, CA, July 2005,

pp. 272–279.

	 Introduction
	 Computational units in modern GPU
	 Multiprocessor units
	 Texture Units
	 Bi-Linear filtering

	 Logarithmic Number System

	 Proposed method
	 Order-2 polynomial approximation
	 Discussion

	 Results and validation
	 Conclusion
	 References

