
Static Address Generation Easing: a Design Methodology for Parallel Interleaver Architectures

C. Chavet2, P. Coussy2, P. Urard1 and E. Martin2
1STMicroelectronics

2Lab-STICC Lab., Université de Bretagne Sud

Abstract—For high throughput applications, turbo-like iterative
decoders are implemented with parallel architectures. However,
to be efficient parallel architectures require to avoid collision
accesses i.e. concurrent read/write accesses should not target the
same memory block. This consideration applies to the two main
classes of turbo-like codes which are Low Density Parity Check
(LDPC) and Turbo-Codes. In this paper we propose a
methodology which finds a collision-free mapping of the
variables in the memory banks and which optimizes the
resulting interleaving architecture. Finally, we show through a
pedagogical example the interest of our approach compared to
state-of-the-art techniques.

Index Terms—Parallel architecture, interleavers, turbo-codes,
memory mapping.

1. INTRODUCTION
In the multimedia and telecommunications domain, continuously
emerging customer services require severe performance to
implement the new communication standards. Indeed,
communication systems require high throughput -on the order of
several hundred Mb/s- accompanied by both low latency and severe
bit error rate BER constraints (e.g. wireless, fiber-optic
communication…). Owing to their impressive near-Shannon-limit
error correcting performance, turbo-like codes in their parallel or
serially concatenated versions [3], originally dedicated to channel
coding, or LDPC codes [4], are being currently reused in most of
digital communication systems (e.g. equalization, demodulation,
synchronization, MIMO…).
These coders are formed by two or more processing elements PE
(encoders/decoders) and one communication network composed of
steering components (multiplexers, butterflies, barrel shifters…)
and memory elements (registers, RAMs…). This network interleaves
the data blocks exchanged by the PEs according to a predefined rule
named interleaving law or permutation law. The turbo decoding
principle is based on an iterative algorithm using decoders
exchanging information in order to improve the error correction
performance through the iterations. The iterative nature of these
algorithms is a severe constraint to satisfy the aforementioned
requirements with an affordable implementation complexity. A
widespread solution is to realize the turbo decoder in a parallel
fashion. One the one hand, this solution increases the throughput
since the latency of the system becomes the latency of constituent
sub-blocks [3]. On the other hand, the complexity and the cost of
the system are increased due to parallel nature of the architecture.
By the way, depending on the interleaving law, different parallel
processing elements may try to simultaneously access the same
memory block (cf. Fig. 1). This problem is known as the “collision”
problem [7]. In this case, three classes of solution are available: The
designer may:
- define his own dedicated interleaving law in order to avoid such

collision problems, but the resulting architecture may not be
standard compliant.

- add extra memory elements and control logic in the
communication network in order to buffer and postpone the
conflicting data.

- find a memory mapping avoiding any conflict access while taking
into account the cost of the architecture (i.e. of the communication
network).

The paper is organized as follows: the second section presents the
existing solutions to design parallel interleaver architectures. The
third section is dedicated to the problem formulation of the
interleaver design. In the fourth section we present the approach we
propose to automatically find a memory mapping solution that
avoids any conflict access. Finally, the last section presents
experimental results on a pedagogical example.

Fig. 1: Memory collision problem

2. RELATED WORKS
Interleaving law is a permutation law, also referred as П, that
scrambles data to break up neighbourhood-relations [7]. It is a key
factor for turbo-codes performances, which varies from one
communication standard to another. Moreover within a given
standard, different interleaving rules can be used for different modes
through varying frame lengths and/or data rates [5]. In this context,
taking into account the aforementioned constraints and the collision
problems to design hardware implementations of parallel turbo
decoders require the integration of complex interconnection network
topology (cf. Fig. 1) supporting the intensive interleaved memory
accesses. Indeed, in state-of-the-art parallel turbo-decoding,
interleaving is considered as a limiting factor concerning the overall
system performance and the architectural cost.
To successfully tackle these problems, different solutions have been
recently proposed.
A first solution to get rid of collisions with nonprunable interleavers,
consists in designing a specific interleaver rule. In [7], the authors
propose a deterministic methodology to design collision-free
interleavers. In [8] and [6] the authors define collision-free
permutations thanks to a combination of a spatial and a temporal
permutation. The authors of [9] simply integrate the collision-free
constraint in the design of their interleaver. However, the multi-
modes architectures (depending on the frame length, the data-rate…)
can not be handled by such approaches. Another solution consists in
defining a collision-free interleaver that preserves this property even
when pruned. In [5], the authors describe a design rule to obtain
such interleavers, with an incremental algorithm that generates
collision-free interleavers by adding new elements in successive
steps, to a small initial permutation. Of course, all these solutions are
viable if and only if the designer is free to choose the permutation
law to be used in the system. As a consequence, the resulting
architecture may not be standard compliant.

A second approach consists in adding extra memory elements in the
communication network. The aim is to buffer and to postpone the
conflicting data. In [1] the authors propose, when a collision
appears, to store the conflicting information in the communication
network until the targeted sub-block can process it. Of course, the
additional network buffering resources, and consequently the time
needed to interleave information, increase with the number of
parallel processors. This is a suboptimal strategy, in terms of
latency and thus throughput, which avoids collisions at the expense
of area and memory. Moreover, the communication is based on a
Benes network [2], which might be suboptimal compared to a
dedicated and optimized architecture. Unlike these implementations,
in [10] the authors propose a solution based on software and/or
reconfigurable parts to achieve the required flexibility, but
achieving lower throughput. In [11], an advanced heterogeneous
communication network implementation was proposed. Two
multistage interconnection network architectures are presented in
order to handle on-chip communications in multiprocessor parallel
turbo decoders. They are based on a dedicated network and
associated routers. The main feature of these network architectures
(Butterfly and Benes based topologies) is their supposed scalability
enabling seamless trade-off between hardware complexity and
available bandwidth for turbo decoding. The Butterfly network,
which lacks of diversity, is a multistage interconnection network
with 2-input 2-output routers. There is a unique path between each
source and destination. As a consequence, the risk of conflict is
increased and the authors have to add queues to store conflicting
information. The second network architecture proposed is based on
a Benes network. In this case, the latency is constant for all the
couples (source, destination), but this network avoids the conflicts
if and only if all the paths have a different destination. Unfortunately,
it has been shown that it was not true for turbo-decoding
applications because interleaving (respectively de-interleaving)
ends in potential conflicts. Moreover, as already mentioned the
Benes networks are costly and under-optimized solutions. In [12]
the authors propose another on-chip interconnection network
adapted to a flexible multiprocessor LDPC decoder based on the de
Bruijn network. This network allows to efficiently supporting the
communication intensive nature of the application. The conflict
access are avoided thanks to a dedicated routing algorithm.
A third solution consists in finding a memory mapping avoiding any
conflict access. Hence, the authors of [13] describe an approach that
avoids collisions for every interleaver and any degree of parallelism.
Contrary to the literature belief, the author have proven that for any
code and any read/write operations scheduling, there exist a suitable
memory mapping that grants a collision-free access. This solution
automatically finds a collision-free data memory mapping respecting
the interleaving rule, thanks to a simulated-annealing algorithm. As a
consequence, the user cannot predict when the algorithm will end.
Moreover, the proposed approach neither targets the optimization of
the storage elements, nor the optimization of the network.
Finally some solutions based on a set of elementary memorising
elements (Registers, FIFO, LIFO), such as [15], have been proposed.
But if these solutions are able to generate strongly optimized
architectures, they can not, to this day, target memory block based
architecture.
In this paper, we present our patented approach named S.A.G.E.1
(Static Address Generation Easing) dedicated to the memory

1 Patent pending in France & UE n°0754793 and patent pending in
USA n°20090031094: C.Chavet, P.Coussy, P.Urard, E.Martin,
“Apparatus for data interleaving algorithm”

mapping in block-based and parallel interleaver architectures.
Counter to previous work, the proposed method considers both the
generation of a conflict-free in-place memory mapping for any
interleaving law (as well as [13] or [1]) and it is able to optimize the
interconnection network (as well as [8]) in order to target a specific
steering component to compose an optimized interconnection network
between the PEs and the memory banks (if the interleaving rule enables
to use this steering component, e.g. a barrel-shifter, a butterfly…).

3. PROBLEM FORMULATION
Let us consider a set of L elements E = {e1 ,… eL}. Suppose we are
given two different partitions on E, namely: Nat = {E1…EN} and
Int= П = {E’1…E’N}. These partitions have the following
characteristics: all subsets Ei, E’i (i = 1,…,N), have the same number
of elements |Ei| = X = L/N. Note that N must be a divisor of L. In
other words, a set Ei (resp. E’ i) represents the data processed at the
same time i for the partition Nat (resp. Int). N is the number of
cycles required to process all the data and X is the resulting
parallelism (number of memory banks and number of processing
elements). The following definition defines the mandatory
constraints to design a conflict-free architecture.

Definition: Let E, Int, and Nat be defined as above. A function
M:{1,…,L} � {1,…,X} is a mapping function for (Nat, Int) if it
satisfies the following conditions for every i, i’ = 1, …, L, i≠ i’ .
 ei , ei’ iE∈ for some i => M(i) ≠ M(i’) (1)

ei , ei’ '
iE∈ for some i => M(i) ≠ M(i’) (2)

or in other words, elements belonging to the same subset in either
partition are mapped to different memory block because they will be
accessed at the same time. The mapping function gives the
correspondence between the variables and the memory banks. If the
constraints (1) and (2) are all satisfied, no collision in the memory
access will take place.

An interleaver architecture is shown Fig. 1. In this pedagogical
example, three processing elements compute data and store the results
in three memory banks, through an interconnection network. The
objective is to be able to compute a memory mapping which satisfies
the constraints (1) and (2), and which also reduces the complexity of
the interconnection network as much as the interleaving law allows it.
A dedicated design approach is thus needed. This approach has to
respect both the interleaving rule and the design constraints
(parallelism, number of memory bank, size of the memory banks,
latency, throughput…). In order to optimize the architecture, the
approach has also to take into account the steering components the
designer wants the interconnection network to be based on.

4. SAGE APPROACH
A. Interleaving Law
As previously mentioned, an interleaver is a component that shuffles
data. It means that from a given input data order Nat, referred as
natural order in this paper (e.g., Nat = 0, 1, 2, 3, 4…), the
architecture has to genetrate the data in a different output order,
referred as the interleaved mode Int (e.g., Int = 1, 9, 10, 5, 0…). The
problem is to be able to design the interleaving architecture.
In order to generate a valid memory mapping, the SAGE algorithm
represents these two data ordering (both natural and interleaved
orders) with two matrixes as shown in Fig. 2.

In this example, the sets Ei (resp. E’i) are the columns of the matrix
MNat (resp. MInt). The lines of the matrix refer to the processing

0 1 2 3
4 5 6 7
8 9 10 11

1 5 2 6
9 0 7 8
10 11 3 4

a- Natural order matrix - MNat b- Interleaved order matrix – MInt
Fig. 2: SAGE reference matrixes

elements, e.g. the first line of each matrix refers to the data to be
computed/stored by the same processing element: PE0 in Fig. 1.

B. Memory Mapping Constraints and Objectives
There are two kinds of constraints/objectives to deal with: the
structural constraints, which will guarantee the validity of the
constraints (1) and (2); and the architectural objectives, which will be
used to guide the memory mapping algorithm in order to implement
the interconnection network based on specific steering components
(e.g. a barrel-shifter based network). The structural constraints are
mandatory in order to ensure the functional correctness of the
resulting memory mapping. On the contrary, if the interleaving law
intrinsically forbids to design the interleaver observing to the targeted
architecture, then this objective may not be reached.

C. SAGE Algorithm
The SAGE algorithm uses two additional matrixes (MAPNat and MAPInt

in Fig. 3) in order represents the memory mapping. These two
matrixes correspond respectively to MNat and MInt and are initially
empty.

- - - -
- - - -
- - - -

- - - -
- - - -
- - - -

a- Natural mapping - MAPNat b- Interleaved mapping– MAPInt
Fig. 3: SAGE Mapping matrixes

In matrix MAPNat (resp. MAPInt) each element (i, j) will be filled with
a memory bank bi. This will mean that the data in MNat(i, j) (resp.
MInt(i, j)) will be stored in bi. This memory mapping will be done
according to aforementioned constraints.
Structural constraints:

- The memory mapping in MAPNat and MAPInt for any data in
common between MNat and MInt must be the same.

- In any column of MAPNat and MAPInt each memory has to be used
only one time.

Architectural objectives:
- The memory mapping in a given column of MAPNat (resp.

MAPInt) has to respect the rules of the steering components that
compose the network.

For example, if we consider a barrel-shifter as a steering component,
the memory mapping in a given column of MAPNat (resp.MAPInt) has to
be a circular permutation of any other column of MAPNat (resp. MAPInt).
The initialization of the SAGE mapping algorithm consists in
assigning a memory bank for a first set of data, e.g. the first column
of MAPNat in Fig. 3.
Next, the corresponding data in the other matrix, MAPInt is updated
with this mapping information. Once this update has been done, the
SAGE algorithm selects the most constrained column (i.e. the most
constraint cycle) and tries to find a memory mapping for the data
which have not been assigned, with respect to structural constraints
and architectural objectives. In order to do this, the algorithm
constructs for all empty cells of the selected column a list of all
available memory banks (respecting the structural constraints for
the current column and the column of the other matrix in which the
data of the current cell is stored). This list is ordered by taking into
account the targeted architecture (the first elements are those which
implement the targeted architecture). If a valid mapping is possible,
i.e. all the lists generated for the current columns have at least one
element, then the mapping is done with the first element of each list.
Then, this mapping is reported in the second matrix and the
recursion is performed. If one of the generated lists for the current
column is empty, then this means that there is no solution with the
current mapping. As a consequence the recursion is stopped and the
algorithm goes back in order to select the next element of the list
created at the previous iteration.

The resulting matrixes represents a conflict free memory mapping
for the given interleaving law, and it also gives the control steps of
the interleaving network.

En; // Enable-boolean variable (Initialized with TRUE)
R ; // Targeted architectural constraints
MNat; // Natural mapping matrix
M Int; // Interleaved mapping matrix
TMC

i
; // Targeted column Ci in matrix M (Natural or interleaved)

LC
i
; // List of valid mapping solution for column Ci

if (En = TRUE) then
 // Search for the targeted column
 TMC

i
 = Select_Target_Column (MNat, MInt);

 // Generation of the list of memory mappnig
 LC

i
 = Valid_Mapping_Solution(MNat, MInt, TMC

i
);

 if (LC
i
 is empty) then

 return (En = FALSE)
 else
 LC

i
 = Mapping_Solution_Ordering (LC

i
, R);

 // Map the first solution in the list LC
i
 = {l 1, l2…}

 Affect_&_Report(MNat, MInt, TMC
i
 , l1);

 En = TRUE;
 MemMap(MNat, MInt, TMC

i
, R, En, LC

i
);

 end if;
else
 // Remove the first element of the list of mapping solution
 LC

i
 = LC

i
 – l1;

 if (LC
i
 is empty) then

 return (En = FALSE)
 else
 // Map the first solution in the list LC

i
 = {l 2…}

 Affect_&_Report(MNat, MInt, TMC
i
 , l2);

 En = TRUE;
 MemMap(MNat, MInt, TMC

i
, R, En, LC

i
);

 end if ;
end if ;

Fig. 4: Memory mapping algorithms – MemMap function

Our recursive algorithm is able to find a valid memory mapping, and
each time the interleaving law enables it, this mapping will respect
the input architectural objective.

5. PRATICAL IMPLEMENTATION
Let’s take as an example the interleaving represented in Fig. 2,
∏={1, 9, 10, 5, 0, 11, 2, 7, 3, 6, 8, 4}, with 3 PEs and a targeted
barrel shifter based steering component.
Let’s suppose that we use the approach presented in [13]. This
approach is in fact the closest one to our methodology. The
algorithm proposed by the author starts with a tiled matrix that
represents the interleaved parallel accesses on the natural order
matrix (see Fig. 5, in this figure the tiles are T0, T1..). If two data are
accessed in the same time in the interleaved order, then they get the
same tile. Then, this algorithm first fills a mapping matrix, see Fig.
6.a with a greedy algorithm: if a memory bank b (b may be A, B or
C) is usable without any conflict, then use b ; if there is no simple
solution then keep the cell empty.

T1 T0 T2 T2
T3 T1 T3 T2
T3 T0 T0 T1

Fig. 5: Initialization of the tiled matrix
Two constraints are mandatory in this algorithm: if two data are in
the same column (natural order access), or if they get the same tile
(interleaved order access), then their memory banks must be
different (This is similar to our structural constraints). Once this first
mapping matrix has been generated, a simulated-annealing is next
used to compute the final mapping: this algorithm forces a
conflicting memory bank in one of the empty cell.

A A A -
B B - B
C C B C

C A A C
B B C B
A C B A

a- Naïve mapping b- Final mapping
Fig. 6: Mapping matrix

This will create a conflict access, which will be solved, maybe creating
a new conflict with another data in the matrix… By the way, all the
generated conflicts will be solved step-by-step, and the algorithm
will be able to fill another empty cell (see [13] for more details).
Even if this algorithm always finds a mapping solution, it has no
control on the resulting architecture since the steering components
are not taken into account during the mapping and Fig. 6 shows that
a barrel-shifter based architecture can not be generated.
On the contrary, our SAGE algorithm is able to take this objective
into account. The first step of the SAGE mapping algorithm consists
in assigning a memory bank for a first set of data, e.g. the first column
of MAPNat in Fig. 7: MAPNat(0)=A, MAPNat(4)=B and MAPNat(8)=C.

A - - -
B - - -
C - - -

- - - -
- - - -
- - - -

a- Natural mapping - MAPNat b- Interleaved mapping– MAPInt
Fig. 7: Initialization of the mapping matrix

Then, the corresponding data in the other matrix, MAPInt in our
example, are updated with this mapping information. This can be
seen in Fig. 8 where the reported memory banks are in bold italic.

A - - -
B - - -
C - - -

- - - -
- A - C
- - - B

a- Natural mapping - MAPNat b- Interleaved mapping– MAPInt
Fig. 8: Memory mapping transfer

Once this update has been done, the SAGE algorithm selects the
most constrained column (i.e. the most constraint cycle) and tries to
assign a memory mapping with respect to both the structural and the
architectural constraints. In Fig. 9, the most constrained column is
the last column of MAPInt and there is only one mapping solution:
MAPInt(6)=A, and this mapping is reported in MAPNat(6)=A.

A - - -
B - A -
C - - -

- - - A
- A - C
- - - B

a- Natural mapping - MAPNat b- Interleaved mapping– MAPInt
Fig. 9: Column selection

Then our algorithm is performed on the rest of the matrixes: the
most constrained column may be the third column of MAPNat for
example. In this case, in order to respect the objective of a barrel-
shifter based architecture, the memory mapping must be MAPNat(2)=C
and MAPNat(10)=B. Indeed, C-A-B is the only circular shift of the
reference column in this matrix (i.e. A-B-C) in this case.

A - C -
B - A -
C - B -

- - C A
- A - C
B - - B

a- Natural mapping - MAPNat b- Interleaved mapping– MAPInt
Fig. 10: Memory mapping for barrel shifter

Fig. 11.g and h, show a resulting valid memory mapping for the
input constraint: Bank A={0, 1, 6, 3}, Bank B={4, 5, 10, 7} and
Bank C={8, 9, 2, 11}. This solution enables the use of a barrel-shifter
to implement the interconnection network since in each matrix, a
column is always a circular permutation of any other column of the
matrix. The mapping matrices also give the network control
information: in natural access, there are only two control switch for
memory access to/from the third column in MAPNat (cf.Fig.11); in
interleaved order, the barrel-shifter as to be switch from one column
to another (The first column is A-C-B, then the second column, B-
A-C, is a one step rotation of the first column…).

A A C -
B - A -
C C B -

A - C A
C A - C
B - - B

a- Natural mapping - MAPNat b- Interleaved mapping– MAPInt
A A C -
B B A -
C C B -

A B C A
C A - C
B - - B

c- Natural mapping - MAPNat d- Interleaved mapping– MAPInt
A A C -
B B A -
C C B C

A B C A
C A - C
B C - B

e- Natural mapping - MAPNat f- Interleaved mapping– MAPInt
A A C A
B B A B
C C B C

A B C A
C A B C
B C A B

g- Natural mapping - MAPNat h- Interleaved mapping– MAPInt
Fig. 11: End of the SAGE algorithm

5. CONCLUSION
In this paper, we have presented a memory mapping methodology
named Static Address Generation Easing to design parallel
interleaver architecture. This methodology allows to generate a valid
memory mapping in any case, and if the interleaving law enables it,
then the resulting memory mapping will respect the targeted
interconnection network. Our approach has been compared through a
pedagogical example to the state-of-the-art techniques and its interest
has been shown

REFERENCES

[1] S.Benedetto, D.Divsalar, G.Montorsi, and F.Pollara, “Serial concatenation
of interleaved codes: Performance analysis, design, and iterative decoding”,
IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 909–926, May 1998.
[2] V.E. Benes, “Mathematical Theory of connecting network and telephone
trafic”, New York, N.Y.: Academic, 1965.
[3] C.Berrou, A.Glavieux, and P.Thitimajshima, “Near-Shannon limit error-
correcting coding and decoding: Turbo codes,” in Proc. IEEE Int. Conf.
Commun., vol. 2, Geneva, Switzerland, 1993, pp.1064–1070.
[4] J.C.MacKay David and R.M.Neal, “Near Shannon limit performance of
low density parity check codes”, Electronics letters, July 1996.
[5] L.Dinoi, S.Benedetto,“Variable-size interleaver design for parallel turbo
decoder architecture”,IEEE Trans.On communications, Vol.53, No11, Nov. 05.
[6] R.Dobkin, M.Peleg, R.Ginosar,“Parallel VLSI architectures and parallel
interleaving design for low-latency MAP turbo decoders”,Tech.Rep..CCIT-
TR436.
[7] A.Giulietti, L.Van Der Perre and M.Strum, “Parallel turbo coding
interleavers: avoiding collisions in accesses to storage elements”, Electronics
Leters, vol. 38, no. 5, pp.232–234, Feb. 2002.
[8] D.Gnaedig, E.Boutillon, M.Jezequel, V.C.Gaudet, and P.G.Gulak, “On
multiple slice turbo codes,” in Proc. 3rd Int. Symp. Turbo Codes, Related
Topics, Brest, 2003, pp. 343–346.
[9] J.Kwak and K.Lee, “Design of dividable interleaver for parallel decoding
in turbo codes,” Electron. Lett., vol. 38, no. 22, pp. 1362–1364, Oct. 2002.
[10] A.La Rosa, C.Passerone, F.Gregoretti, L.Lavagno,“Implementation of a
UMTS turbodecoder on dynamically reconfigurable platform”,DATE04, Paris.
[11] O.Muller, A.Baghdadi, M.Jezequel, “ASIP-based multiprocessor SoC
design for simple and double binary turbo decoding”, DATE06.
[12] H.Moussa, A.Baghdadi, M.Jezequel, “Binary de Bruijn on-chip network for a
flexible multiprocessor LDPC decoder”. 45th ACM/IEEE DAC : design automation
conference, p. 429-434, 2008.
[13] A.Tarable, S.Benedetto, and G.Montorsi, “Mapping interleaving laws to
parallel turbo and LDPC decoder architectures”, IEEE Trans. Inf. Theory,
vol. 50, no.9, pp.2002-2009, Sep.2004.
[14] M.J.Thul,F.Gilbert, and N.Wehn, “Optimized concurrent interleaving
architecture for high-throughput turbo-decoding,” in Proc. 9th Int. Conf.
Electron., Circuits, Syst., vol.3, pp.1099–1102, 2002.
[15] C.Chavet, P.Coussy, P.Urard, E.Martin,“A Methodology for Efficient
Space-Time Adapter Design Space Exploration: A Case Study of an Ultra
Wide Band Interleaver”, Proceedings of IEEE International Symposium on
Circuits and Systems (ISCAS), May 2007.

