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Abstract—For high throughput applications, turbo-like iterative
decoder s are implemented with paralléel architectures. However,
to be efficient parallel architectures require to avoid collision
accesses i.e. concurrent read/write accesses should not target the
same memory block. This consideration applies to the two main
classes of turbo-like codes which are Low Density Parity Check
(LDPC) and Turbo-Codes. In this paper we propose a
methodology which finds a collison-free mapping of the
variables in the memory banks and which optimizes the
resulting interleaving architecture. Finally, we show through a
pedagogical example the interest of our approach compared to
state-of-the-art techniques.

Index Terms—Parallel architecture, interleavers, turbo-codes,
memory mapping.

1. INTRODUCTION

In the multimedia and telecommunications domaimtiooiously
emerging customer services require severe perfarenato
implement the new communication standards.
communication systems require high throughput {om arder of
several hundred Mb/s- accompanied by both low temd severe
bit error rate BER constraints (e.g. wireless, rfibptic
communication...). Owing to their impressive near+8fen-limit
error correcting performance, turbo-like codes heitt parallel or
serially concatenated versions [3], originally dedéd to channel
coding, or LDPC codes [4], are being currently ezlg most of
digital communication systems (e.g. equalizatioemddulation,
synchronization, MIMO...).
These coders are formed by two or more procesdemgents PE
(encoders/decoders) and one communication netwamposed of
steering components (multiplexers, butterflies, rédashifters...)
and memory elements (registers, RAMSs...). This ndtirterleaves
the data blocks exchanged by the PEs accordingtedefined rule
named interleaving law or permutation law. The tudecoding
principle is based on an iterative algorithm usidgcoders
exchanging information in order to improve the ercorrection
performance through the iterations. The iteratieure of these
algorithms is a severe constraint to satisfy thereshentioned
requirements with an affordable implementation clexity. A
widespread solution is to realize the turbo decddea parallel
fashion. One the one hand, this solution incrediseshroughput
since the latency of the system becomes the latehcgnstituent
sub-blocks [3]. On the other hand, the complexitg ¢he cost of
the system are increased due to parallel natuteeadrchitecture.
By the way, depending on the interleaving law,etiht parallel
processing elements may try to simultaneously actks same
memory block (cf. Fig. 1). This problem is knownthas “collision”
problem [7]. In this case, three classes of safuéice available: The
designer may:
- define his own dedicated interleaving law in ortieravoid such

collision problems, but the resulting architecturgy not be

standard compliant.

Indeed,

- find a memory mapping avoiding any conflict accesdle taking
into account the cost of the architecture (i.ehefcommunication
network).

The paper is organized as follows: the second aegiresents the

existing solutions to design parallel interleavech@tectures. The

third section is dedicated to the problem formolatiof the

interleaver design. In the fourth section we présea approach we
propose to automatically find a memory mapping tofu that

avoids any conflict access. Finally, the last sectipresents
experimental results on a pedagogical example
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Fig. 1: Memory collision problem

2. RELATED WORKS
Interleaving law is a permutation law, also refdrras I, that
scrambles data to break up neighbourhood-relafihdt is a key
factor for turbo-codes performances, which varigemf one
communication standard to another. Moreover witlingiven
standard, different interleaving rules can be Usedlifferent modes
through varying frame lengths and/or data rateslfbthis context,
taking into account the aforementioned constraanis the collision
problems to design hardware implementations of llghréurbo
decoders require the integration of complex intensztion network
topology (cf. Fig. 1) supporting the intensive neaved memory
accesses. Indeed, in state-of-the-art parallel otddroding,
interleaving is considered as a limiting factor caming the overall
system performance and the architectural cost.
To successfully tackle these problems, differefiitsmns have been
recently proposed.
A first solution to get rid of collisions with nongnable interleavers,
consists in designing a specific interleaver rie[7], the authors
propose a deterministic methodology to design siolti-free
interleavers. In [8] and [6] the authors define lisain-free
permutations thanks to a combination of a spatia a temporal
permutation. The authors of [9] simply integrate ttollision-free
constraint in the design of their interleaver. Hoer the multi-
modes architectures (depending on the frame letiyttdata-rate...)
can not be handled by such approaches. Anothetigoleonsists in
defining a collision-free interleaver that presertieis property even
when pruned. In [5], the authors describe a desig® to obtain
such interleavers, with an incremental algorithnat tlyenerates
collision-free interleavers by adding new elemeimssuccessive
steps, to a small initial permutation. Of courdkthese solutions are
viable if and only if the designer is free to chedke permutation

-add extra memory elements and control logic in theay 1o be used in the system. As a consequencesetgting

communication network in order to buffer and posgpathe
conflicting data.

architecture may not be standard compliant.



A second approach consists in adding extra memements in the
communication network. The aim is to buffer andotistpone the
conflicting data. In [1] the authors propose, whancollision
appears, to store the conflicting information ie tommunication
network until the targeted sub-block can proces®itcourse, the
additional network buffering resources, and consatjy the time
needed to interleave information, increase with thenber of
parallel processors. This is a suboptimal strateégyterms of
latency and thus throughput, which avoids collisiah the expense
of area and memory. Moreover, the communicatiobased on a
Benes network [2], which might be suboptimal conegato a
dedicated and optimized architecture. Unlike theggementations,
in [10] the authors propose a solution based otwsoé and/or
reconfigurable parts to achieve the required flidilgh but
achieving lower throughput. In [11], an advancedefaeneous
communication network implementation was proposd&avo
multistage interconnection network architectures presented in
order to handle on-chip communications in multigssor parallel
turbo decoders. They are based on a dedicated metand
associated routers. The main feature of these mietarchitectures
(Butterfly and Benes based topologies) is theipsged scalability
enabling seamless trade-off between hardware coitpland
available bandwidth for turbo decoding. The Butjerietwork,
which lacks of diversity, is a multistage intercention network
with 2-input 2-output routers. There is a uniquéhgaetween each
source and destination. As a consequence, theofigonflict is
increased and the authors have to add queues r® ctaflicting
information. The second network architecture pregas based on
a Benes network. In this case, the latency is emtidor all the
couples (source, destination), but this networkidssdéhe conflicts
if and only if all the paths have a different deation. Unfortunately,
it has been shown that it was not true for turboedéng
applications because interleaving (respectivelyintedeaving)
ends in potential conflicts. Moreover, as alreadgntioned the
Benes networks are costly and under-optimized isolst In [12]
the authors propose another on-chip interconnectietwork
adapted to a flexible multiprocessor LDPC decodeseld on the de
Bruijn network. This network allows to efficientlsupporting the
communication intensive nature of the applicatidihe conflict
access are avoided thanks to a dedicated routjogitdm.

A third solution consists in finding a memory mappiavoiding any
conflict access. Hence, the authors of [13] descaib approach that
avoids collisions for every interleaver and anyréegof parallelism.
Contrary to the literature belief, the author hpveven that for any
code and any read/write operations schedulingetbrist a suitable
memory mapping that grants a collision-free acc&hss solution
automatically finds a collision-free data memoryppiag respecting
the interleaving rule, thanks to a simulated-aringalgorithm. As a
consequence, the user cannot predict when theitalgowill end.
Moreover, the proposed approach neither targetsgtimization of
the storage elements, nor the optimization of gtevark.

Finally some solutions based on a set of elementagnorising
elements (Registers, FIFO, LIFO), such as [15] ehaeen proposed.
But if these solutions are able to generate styorggitimized
architectures, they can not, to this day, targethorg block based
architecture.

In this paper, we present our patented approacteds®nA.G.E
(Static Address Generation Easing) dedicated to ri@mory
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mapping in block-based and parallel interleaverhiggctures.

Counter to previous work, the proposed method clemsiboth the
generation of a conflict-free in-place memory maypifor any

interleaving law (as well as [13] or [1]) and itable to optimize the
interconnection network (as well as [8]) in ordertarget a specific
steering component to compose an optimized interection network

between the PEs and the memory banks (if the @gteirhg rule enables
to use this steering component, e.g. a barreleshitbutterfly...).

3. PROBLEM FORMULATION
Let us consider a set bfelementE = {e;,... g}. Suppose we are
given two different partitions o, namely:Nat = {E;...E\} and
Int=_11 = {E;..E'\}. These partitions have the following
characteristics: all subsdfs E’; (i =1,...,N, have the same number
of elementqE;| = X = L/N. Note thatN must be a divisor dof. In
other words, a sef; (resp.E’;) represents the data processed at the
same timei for the partitionNat (resp.Int). N is the number of
cycles required to process all the data atds the resulting
parallelism (number of memory banks and number rotessing
elements). The following definition defines the matory
constraints to design a conflict-free architecture.
Definition: Let E, Int, and Nat be defined as above. A function
M:A{1,...,.L} = {1,...,X} is a mapping function forNat, In} if it
satisfies the following conditions for evary’ =1, ...,L, i#i'.
e, & 0F for somei =>M(i) # M(i’) 1)
e,6 [ Ei'for somei =>M(i) £ M(i’) 2
or in other words, elements belonging to the saoieset in either
partition are mapped to different memory block kuseathey will be
accessed at the same time. The mapping functioesgihe
correspondence between the variables and the mewaoiss. If the
constraints (1) and (2) are all satisfied, no sl in the memory
access will take place.
An interleaver architecture is shown Fig. 1. Instigedagogical
example, three processing elements compute datstarthe results
in three memory banks, through an interconnectietwork. The
objective is to be able to compute a memory mappinigh satisfies
the constraints (1) and (2), and which also redtitesomplexity of
the interconnection network as much as the inteirlgdaw allows it.
A dedicated design approach is thus needed. Thgeaph has to
respect both the interleaving rule and the desigmstaints
(parallelism, number of memory bank, size of themmey banks,
latency, throughput...). In order to optimize the hétecture, the
approach has also to take into account the steeongponents the
designer wants the interconnection network to lsetan.
4. SAGE APPROACH
A. Interleaving Law
As previously mentioned, an interleaver is a congmbrthat shuffles
data. It means that from a given input data omdet referred as
natural order in this paper (e.gNat = 0, 1, 2, 3, 4...), the
architecture has to genetrate the data in a diffecaitput order,
referred as the interleaved madde (e.g.,Int =1, 9, 10, 5, 0...). The
problem is to be able to design the interleavirghitecture.
In order to generate a valid memory mapping, th&BAlgorithm
represents these two data ordering (both naturdl iaterleaved
orders) with two matrixes as shown in Fig. 2.

0 1 2 3 1 5 2 6
4 5 6 7 9 0 7 8
8 9 10 11 10 11 3 4
a- Natural order matrix Mat b- Interleaved order matrix Mnt

Fig. 2: SAGE reference matrix

In this example, the sef§ (resp.E’;) are the columns of the matrix
Mpnat (resp. M. The lines of the matrix refer to the processing



elements, e.g. the first line of each matrix referghe data to be
computed/stored by the same processing elerR&ptn Fig. 1.

B. Memory Mapping Constraints and Objectives

There are two kinds of constraints/objectives taldeith: the
structural constraints, which will guarantee thdidity of the
constraints (1) and (2); and the architectural @bjes, which will be
used to guide the memory mapping algorithm in otdemplement
the interconnection network based on specific stgecomponents
(e.g. a barrel-shifter based networkje structural constraints are
mandatory in order to ensure the functional comes$ of the
resulting memory mapping. On the contrary, if thieileaving law
intrinsically forbids to design the interleaver ebgng to the targeted
architecture, then this objective may not be redche

C. SAGE Algorithm
The SAGE algorithm uses two additional matriX@s®ya andMAP

in Fig. 3) in order represents the memory mapping. These twqg

matrixes correspond respectively My, andM,,; and are initially
empty.

a- Natural mapping MAPNat b- Interleaved mapping¥MAP
Fig. 3: SAGE Mapping matrixes

In matrix MAPya: (resp.MAP,) each element (i, j) will be filled with

a memory banlb;. This will mean that the data Wnadi, j) (resp.

Ming(i, j) ) will be stored inb;. This memory mapping will be done

according to aforementioned constraints.

Structural constraints:

- The memory mapping iMAPw.: and MAPy, for any data in
common betweeMy andM,,; must be the same

- In any column ofMAPy, andMAP,,; each memory has to be used
only one time.

Architectural objectives:

- The memory mapping in a given column APy (resp.
MAP,) has to respect the rules of the steering comporibats
compose the network.

For example, if we consider a barrel-shifter atearing component,
the memory mapping in a given columnMX&Pyz (reSpMAPy) has to
be a circular permutation of any othercolummaPya: (resp.MAP ).
The initialization of the SAGE mapping algorithm nsists in
assigning a memory bank for a first set of dag, the first column
of MAPy in Fig. 3.

Next, the corresponding data in the other maMAP,; is updated
with this mapping information. Once this update basn done, the
SAGE algorithm selects the most constrained col(menthe most
constraint cycle) and tries to find a memory magpior the data
which have not been assigned, with respect to tstraicconstraints
and architectural objectives. In order to do thise algorithm
constructs for all empty cells of the selected poiua list of all
available memory banks (respecting the structuoalstraints for
the current column and the column of the other imatrwhich the
data of the current cell is stored). This list idered by taking into
account the targeted architecture (the first elésare those which
implement the targeted architecturéf)a valid mapping is possible,
i.e. all the lists generated for the current colarhave at least one
element, then the mapping is done with the firsingint of each list.
Then, this mapping is reported in the second maamxi the
recursion is performed. If one of the generateit ligr the current
column is empty, then this means that there isahation with the
current mapping. As a consequence the recursistojgped and the
algorithm goes back in order to select the nextneld of the list
created at the previous iteration.

The resulting matrixes represents a conflict fremmmory mapping
for the given interleaving law, and it also gives ttontrol steps of
the interleaving network.

En; // Enable-boolean variable (Initialized with TRUE)
R; /I Targeted architectural constraints

Mnat  // Natural mapping matrix

M // Interleaved mapping matrix

Tuc; /I Targeted column;@n matrix M (Natural or interleaved)
Lc; [/l List of valid mapping solution for column C

if (En = TRUE)then
/I Search for the targeted column
TMCi = Select_Target_Column @4, Mino);

/I Generation of the list of memory mappnig
Lc‘ = Valid_Mapping_Solution(Mag, Mint, TMC‘);
if (Lci is empty) then
return (En = FALSE)
ese
LCI = Mapping_Solution_Ordering (;II., R);
/I Map the first solution in the Iisk‘L: {Iy, 12...}
Affect_& Report(Ma, Mint, Twc, » h);
En= TRUE;
MemMap(Mat, Min, TMC‘y R, En, lci);
end if;
else
/I Remove the first element of the list of nragpolution
|-(:i = |-(:i =k
if (Lci is empty) then
return (En = FALSE)
else
/I Map the first solution in the Iisé‘L: {I2...}
Affect_& Report(May, Mint, Tuc, » bo);
En= TRUE;
MemMap(Mat, M, TMC‘y R, En, lcl);
end if ;
endif ;

Fig. 4: Memory mapping algorithms — MemMap function
Our recursive algorithm is able to find a valid neynmapping, and
each time the interleaving law enables it, this piag will respect
the input architectural objective.

5. PRATICAL IMPLEMENTATION
Let's take as an example the interleaving represem Fig. 2,
[1={a, 9, 10, 5, 0, 11, 2, 7, 3, 6, 8, 4}, withPEsand a targeted
barrel shifter based steering component.
Let's suppose that we use the approach presentdd3in This
approach is in fact the closest one to our mettamgol The
algorithm proposed by the author starts with adtiteatrix that
represents the interleaved parallel accesses omah&al order
matrix (see Fig. 5, in this figure the tiles arg T;..). If two data are
accessed in the same time in the interleaved ofiden, they get the
same tile. Then, this algorithm first fills a mapgimatrix, see Fig.
6.a with a greedy algorithm: if a memory bamkb may be A, B or
C) is usable without any conflict, then use if there is no simple
solution then keep the cell empty.

T, | To | T | T
Ts T1 T3 T2
T3 To To T1

Fig. 5: Initialization of the tiled matrix

Two constraints are mandatory in this algorithmtwib data are in
the same column (natural order access), or if tfetythe same tile
(interleaved order access), then their memory bamkst be
different (This is similar to our structural corastits). Once this first
mapping matrix has been generated, a simulatedatingeis next
used to compute the final mapping: this algorithorcés a
conflicting memory bank in one of the empty cell.



A A A - C A A C
B B - B B B C B
C C B C A C B A

a- Naive mapping b- Final mapping

Fig. 6: Mapping matrix
This will create a conflict access, which will lihed, maybe creating
a new conflict with another data in the matrix... g way, all the
generated conflicts will be solved step-by-stepd #me algorithm
will be able to fill another empty cell (see [18} fmore details).
Even if this algorithm always finds a mapping swnf it has no
control on the resulting architecture since theratg components
are not taken into account during the mapping dgd@shows that
a barrel-shifter based architecture can not bergést
On the contrary, our SAGE algorithm is able to tékis objective
into account. The first step of the SAGE mappirgpathm consists
in assigning a memory bank for a first set of datg, the first column
Of MAPy4 in Fig. 7:MAPNa{0)=A, MAP\a(4)=B andMAPy.(8)=C.
A - - - - - - -
B - - - - - - -
C - - - - - - -
a- Natural mapping MAPNat b- Interleaved mappingMAP«
Fig. 7: Initialization of the mapping matrix
Then, the corresponding data in the other mawixpP,: in our
example, are updated with this mapping informatibhis can be
seen in Fig. 8 where the reported memory bankmaveld italic.

A - - - - R R R
B | - - - - Al -Tc
c [ - - - - - B

a- Natural mapping MAPyat b- Interleaved mappingMAP
Fig. 8 Memory mapping transfer

Once this update has been done, the SAGE algost#iects the
most constrained column (i.e. the most constraialed and tries to
assign a memory mapping with respect to both thetstral and the
architectural constraints. In Fig. 9, the most ¢@ised column is
the last column oMAP, and there is only one mapping solution:
MAP(6)=A, and this mapping is reportedNtiPya(6)=A.

Al - - - - - - A
B | - [ A - - Al -Tc
c | - - - - - - B

a- Natural mapping MAPNat b- Interleaved mappingMAP:
Fig. 9: Column selection

Then our algorithm is performed on the rest of thatrixes: the
most constrained column may be the third columriMaPy, for
example. In this case, in order to respect theatibge of a barrel-
shifter based architecture, the memory mapping beiStAPy.(2)=C
and MAP\.(10)=B. Indeed, C-A-B is the only circular shift tfe
reference column in this matrix (i.e. A-B-C) inghiase

A - C - - - C A
B - A - - A - C
C - B - B - - B

a- Natural mapping MAPyat b- Interleaved mappingVAP;
Fig. 10: Memory mapping for barrel shifter
Fig. 11.g and h, show a resulting valid memory niaggor the
input constraintBank A={0, 1, 6, 3}Bank B={4, 5, 10, 7}and

A A [ - A - C A
B - A - C A - C
[ C B - B - - B
a- Natural mapping MAPNat b- Interleaved mappingMAP
A A C - A B [ A
B B A - C A - C
C C B - B - - B
c- Natural mapping MAPyat d- Interleaved mappingMAP
A A C - A B C A
B B A - C A - C
[ [ B C B C - B
e- Natural mapping MAPNat f- Interleaved mappingMAPt
A A C A A B C A
B B A B C A B C
C C B C B C A B

g- Natural mapping MAPya h- Interleaved mappingMAPt
Fig. 11: End of the SAGE algorithm

5. CONCLUSION

In this paper, we have presented a memory mappeitpadology

named Static Address Generation Easing to desigrallga

interleaver architecture. This methodology allowgénerate a valid
memory mapping in any case, and if the interlealévg enables it,

then the resulting memory mapping will respect taegeted

interconnection network. Our approach has been aczdthrough a
pedagogical example to the state-of-the-art teales@nd its interest
has been shown
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