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ABSTRACT

The EMIME project aims to build a personalized speech-&esh
translator, such that spoken input of a user in one languagedad
to produce spoken output that still sounds like the userisevhow-
ever in another language. This distinctiveness makes engispd
cross-lingual speaker adaptation one key to the projeatsess.

So far, research has been conducted into unsupervised asst cr

lingual cases separately by means of decision tree maizatiah

and HMM state mapping respectively. In this paper we combiiee
two techniques to perform unsupervised cross-linguallsyesdap-
tation. The performance of eight speaker adaptation sys{em

pervised vs. unsupervised, intra-lingual vs. cross-lalgis com-

pared using objective and subjective evaluations. Expariai re-

sults show the performance of unsupervised cross-linguedker
adaptation is comparable to that of the supervised caserirstef

spectrum adaptation in the EMIME scenario, even thoughraaiio

cally obtained transcriptions have a very high phoneme eate.
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made it feasible to conduct unsupervised intra-linguahkpeadap-
tation in a unified modelling framework. As a result, emptaythe
HMM state mapping technique [5] as well as decision tree matg
ization should make unsupervised cross-lingual speakaptation
viable in a unified modelling framework. We investigate tliil-
ity of the combination of these techniques in this paper.
In Section 2, decision tree marginalization and HMM stat@ma

ping are briefly reviewed. In Section 3, details on applying two
techniques simultaneously to unsupervised cross-lingpabker

adaptation are described. We then compare the performdnce o

supervised and unsupervised cross-lingual speaker didapsys-
tems in the context of English and Mandarin Chinese in Sectio
Conclusions follow in Section 5.

2. COMPONENT TECHNIQUES

2.1. Decision Tree Marginalization

Index Terms— unsupervised cross-lingual speaker adaptation,

decision tree marginalization, HMM state mapping

1. INTRODUCTION

The language barrier is an important hurdle to overcome deror
to facilitate better communication between people acrosgtobe.
It would be exciting and extremely helpful if we had a reahei
automated speech-to-speech translator, especially wigetnansla-
tor could reproduce a user’s input voice characteristidssioutput
speech. This is exactly the principal goal of the EMIME pobje
(Effective Multilingual Interaction in Mobile Environmes). Cross-
lingual speaker adaptation is thus one of the key goals of\NEBI

Such a speech-to-speech translator consists of speedmieco

tion, machine translation and speech synthesis. EMIMEdeswn
speech recognition and synthesis. Bridging the gap betspeech
recognition and synthesis [1] is also an implicit goal. Thu®

Decision tree marginalization [4] allows deriving speeebagnition
models from a full-context speech synthesis model set doupito
given triphone labels. Hence, the first stage is trainingwentional
HMM-based speech synthesis system from scratch, of which ea
HMM state emission distribution is typically composed ofiagse
Gaussian PDF.

Conventionally, making a new synthesis model is carriecbgut
traversing a synthesis decision tree according to the ningdatext
label and eventually assigning one leaf node to it. The bidsa
of decision tree marginalization is fairly straightforwan the sense
that it generates a triphone recognition model in almoststmae
manner. The only difference from making a new synthesis riede
that both children of a decision tree intermediate node efgyn-
thesis system are traversed when the question associatiedhei
intermediate node is irrelevant to any triphone context. figally
a triphone label is associated with more than one leaf nodéhw

hope to employ a unified modelling framework which applies toform a state emission distribution of multiple Gaussian ponents.

both recognition and synthesis. As speech recognitionpEajly
HMM-based and we want to easily alter the voice identity dpoti
speech, the HMM-based speech synthesis technology [2,tBgis
ideal choice. As a statistical parametric approach, the Hbéded
framework provides a great deal of flexibility, especialiytwespect
to its generality across languages and the ease of altesing ghar-
acteristics of models. Consequently, this paper invetsfgaross-
lingual speaker adaptation based on unified HMM modelling.
We proposed a decision tree marginalization technique]ifof4

In other words, a triphone model for recognition constrddig de-
cision tree marginalization can be viewed as a linear coatlan
of full-context single Gaussian models for synthesis. Naeiga-
rameters are changed during the whole process. See Figareat f
example.

The decision tree marginalization process described abae
tually a special case. It can be extended such that an aybitvatext
combination of full-context labels is marginalized outr Festance,
we can create tonal monophone models by marginalizing btheal

unified HMM modelling, by which speech recognition can be-per contexts that are unrelated to the base phone context aadrtfam-

formed with speech synthesis models. We found that thistqaok

mation.
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No -
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L_plosive?

p(o| r-ih+z)=P(Gl | r-ih+z) p(o | G1)+ P(G3 | r-ih+z) p(o | G3)

Fig. 1. An example of decision tree marginalization, showing how

a new recognition modelr* i h+z” is derived from a decision tree
of a speech synthesis systenbh (*/ “R_": left/right phone; “G?":
clustered state emission distribution PDFs)

2.2. HMM State Mapping

First of all, we prepared HMM state mapping rules using two av
erage voice synthesis model setdihand L2, respectively, and per-
formed speech recognition with the help of decision treegmai-
ization in order to obtain estimated triphone transcrimgiof adap-
tation data uttered if.1.

Once estimated triphone transcriptions of adaptation wata
available, either the transform version or the data versiadMM
state mapping was used for “supervised” cross-linguallsyesdap-
tation. Note that estimated transcriptions were triph@tgiences in
L1. So rather than the synthesis model st init is the recognition
models ofZ1 constructed by decision tree marginalization that were
involved in the “supervised” cross-lingual speaker adéma

4. EXPERIMENTS

4.1. Experimental Setup

We trained two average voice, single Gaussian synthesiglnsets
on the corpora SpeeCon (Mandarin) and WSJ SI84 (English), re
spectively, and derived HMM state mapping rules and eighties¢

We consider the case in which we have adaptation data in am inpsis systems from them. Half of the eight systems were sugpenvi
language [.1) and an average voice model set for synthesis in an outand the rest were unsupervised. We collected bilingual tatiap

put languageI2). In theory, this prevents us from directly adapting
the voice identity of the average voice model set into théhefdap-
tation data, because language mismatch eliminates albthespon-
dence between the data and the model set. Two possiblecs@uti
are (i) training a bilingual model set [6] and (ii) reconstiing the
correspondence. HMM state mapping [5] is an effective meta
pable of reconstructing the correspondence for crossHihgpeaker
adaptation when a bilingual model set is unavailable.

HMM state mapping requires two decent average voice model 1/2
sets inL1 and L2, respectively. The two average voices are pre- D/T

sumed to sound like a single person. Each state-clustérl qor
L2) is then associated with the most similar onel@f (or L1) by
matching state-cluster PDFs in the two model sets which haxe
imum (symmetric) Kullback-Leibler divergence betweemthét is
not guaranteed that every state-clustef.df(or L1) is touched. Un-
touched ones are ignored typically. \&tal. [5] proposed two ways
of applying state mapping rules to cross-lingual speakaptation:

data from two Chinese studentq (@nd Z) who also spoke English
well. The Mandarin and English prompts, which were not idel
in our training data, were also selected from SpeeCon and Y¥SJ
spectively. Mandarin and English were defined as ingit) @nd
output (.2) languages, respectively, throughout our experiments.

System name formatS(U) (1/2) - (D/T/M)

S/U | supervised / unsupervised

cross-lingual / intra-lingual

data/transform version of HMM state mapping

Decision tree marginalization was used instead of HMM
state mapping. The average voice model set of Mandarin
(L1) was therefore unnecessary.

M

Following this naming rule, the eight synthesis systemsv&s,
S1-M, S1-T, S1-D, U2, Ul-M, U1-T and U1-D:

S2 purely built on the English side

Transform version is performed by first generating speaker depen-S1-M We marginalized out all the English-specific contexts first.

dent transforms by carrying out intra-lingual speaker talap
tion using the acoustic model set trained for. Following
this, voice characteristics of the acoustic model sdidrare
converted by applying these speaker-dependent transtorms
state-clusters of.2's acoustic models, according to prepared
state mapping rules between the two acoustic model sets.

As a result, a Mandarin full-context label was associatet wi
more than one English state-cluster. Then Mandarin adapta-
tion data could be treated as English data for “intra-lifgua
speaker adaptation.

S1-T & S1-D as described in Section 2.2

U2 purely built on the English side; as described in Section 2.1

Data version is performed by first mapping state-clusters of theU1-M We marginalized out all the non-triphone contexts and then

acoustic model set i1 to those of.2’s acoustic models.
Then adaptation data bl is associated with state-clusters of
L2 through state-clusters df1. Finally the adaptation data
in L1 is treated as ifit were i.2 and adaptation is performed
using L2's acoustic models in the “intra-lingual” sense.

3. COMBINING DECISION TREE MARGINALIZATION
AND HMM STATE MAPPING

As discussed above, decision tree marginalization maKessible
to perform unsupervised intra-lingual speaker adaptaihHMM
state mapping makes it feasible to perform supervised dirmgpsal
speaker adaptation. We expected that their combinationdnent
able unsupervised cross-lingual speaker adaptation.

recognized Mandarin adaptation data with English models.
Mandarin adaptation data was thus associated with the En-
glish average voice model set.

U1-T & U1-D as described in Section 3

As decision tree marginalization was engaged in all the four
unsupervised systems and S1-M, their transforms were &stthn
over multiple Gaussian component models instead of singlesG
sian ones.

Speech features were 39th-order mel-cepstig Fy, five di-
mensional band aperiodicity, and their delta and delttad=effi-
cients. The CSMAPLR [7] algorithm and 40 adaptation utteesn
were used. Global variances were calculated on adaptatitan é
simple phoneme loop was adopted as a language model fonriecog
tion. The average phoneme error rate was around 75%.



4.2. System Evaluation stress-timed & atonal) is distinct from that of Mandarie (isyllable-
timed & tonal). Hence, pitch and duration of utterances tie-

We calculated RMSE of mel-cepstrum (MCEP) afig as well as
correlation coefficients and voicing error ratesiof, for objective
evaluation. See Table 1 ("AV” means “average voice”).

jectively evaluated were synthesized by the English aeeragce
model set. We then shifted the meah value of each synthesized
pitch contour to that of speech data of the correspondirigduial
speaker @ or Z). So our formal listening test merely focused on

MCEP Fo the performance of spectrum adaptation.
RMSE (/frm) || RMSE (Hz/frm) || CorrCoef Our formal listening test consisted of two sections: ndhess
H | Z H | Z H | 7 and speaker similarity. In the naturalness section, anéstevas re-
AV 1.39| 143 | 26.0 35.9 0.46 | 0.49 quested to listen to a natural utterance first and then attesasyn-
S2 1.04] 1.04 || 118 9.6 0.46 | 0.56 thesized by the eight systems each as well as vocoded speech i
u2 1.06 | 1.08 || 13.0 14.0 0.47 | 0.54 random order. Having listened to each synthesized utterdhe lis-
S1-T || 1.23] 1.22 || 20.0 12.6 0.47 | 0.51 tener was requested to score what he/she heard on a 5-palet sc
Ul-T || 1.24| 1.26 || 21.1 16.5 0.48 | 0.53 of 1 through 5, where 1 meant “completely unnatural” and 5mhea
S1-D || 1.3 1.14 || 195 12.6 047 051 “completely natural”. The speaker similarity section wasidned
Ul-D || 1.13| 1.13 || 22.7 17.3 0.48 | 0.55 in the same fashion, except that a listener was requestéstda to
S1-M Il 1.10 | 1.11 || 25.9 2273 048] 054 one more utterance which was synthesized directly by theagee
Ul-M || 1.10| 1.21 || 25.1 21.0 0.48 | 0.53 voice models and the 5-point scale was such that 1 meant dsoun

like a totally different person” and 5 meant “sounds like ekathe

Table 1. Objective evaluation results same person”.

The proposed method was mainly designed for spectrum adapta
tion. Table 1 confirms that the performance of unsuperviskgia-
tion is comparable to that of supervised adaptation no mattiech
approach was applied, especially in terms of spectrum. WAitcg
to Table 1:

(1) Intra-lingual systems provided the best performanderims
of spectrum adaptation, which makes sense as there wasgualza
mismatch.

(2) Itis not surprising that S1-T and U1-T provided worse-per
forming spectrum adaptation, because the transforms vséreated
on the Mandarin side but used to adjust the English average vo
models; there was an obvious language mismatch.

(3) In contrast, mapping rules were applied to the Mandarin
adaptation data before transform estimation when the dation
of HMM state mapping was used. Since transforms were djrectl
estimated on the Mandarin data and the English average naide
els, the language mismatch in S1-D and U1-D could be partly al
leviated by the maximum likelihood linear transformatidilL(_T)
based adaptation algorithm. RMSE of MCEP thus decreased.

(4) In S1-M and U1-M, without any explicit mapping rules, the
Mandarin adaptation data was directly associated with Ridfse
English average voice models by prior phonetic knowledgkiman
ML-based data-driven manner, respectively. This couldeigarded
as an automatic, more precise, mapping process. So S1-Mkil U
could be slightly better than S1-D and U1-D in terms of speutr

(5) Unfortunately, the great prosody distinction between E
glish and Mandarin mearff, adaptation was not nearly as effective.

Speaker Languagé Mean StD  Min  Max

W supervised M unsupervised

T 95% confidence interval

vocoder intra *1-D *1-T *1-M

Fig. 2. Naturalness score (speal€)
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Fig. 3. Naturalness score (speakg&y

Twenty listeners participated in our listening test. Beszaof

H Mandarin | 137.9 252 729 2363 the anonymity of our listening test, only two native Engligeak-
H English | 128.7 11.8 641 2226 ers can be confirmed. The results in Figure 2 and Figure 3 stigge
Z Mandarin | 117.9 154 58.1 182.1 that unsupervised cross-lingual speaker adaptation ipahle to
Z English | 1120 103 593 186.1 or sometimes better than the supervised case in terms ofahatu
o ] ness. We noted that in the case of intra-lingual speakertatitam
Table 2. [ statistics (Unit: Hz) with speakerZ’s speech adaptation data, the supervised system S2

outperformed the unsupervised one U2. This is probably useca
Initially we synthesized speech with adapted pitch corstigout ~ speakelZ speaks Mandarin accented English while spedkérnas a
unnatural pitch patterns resulting from unsupervisedsstiogual  more natural English accent. In order to avoid the potepffakt of
speaker adaptation were perceived during informal lisggeivalua-  non-standard English accents, only spealfewas involved in the
tion. In addition, Table 2 confirms that the prosody of Erglise.  speaker similarity evaluation.



It is observed from both objective and subjective evaluatis
sults that for speakef, *1-D and *1-M followed the intra-lingual
adaptation systems closely while *1-T evidently underperfed.
Reviewing the analysis of Table 1, we noted the state enm$2iaFs
of *1-D, *1-M and intra-lingual systems for transform esttion
were all in English, which was the output language, and that t
difference was just language identities of their adaptatiata. By
contrast, both the emission PDFs and adaptation data of fdrT
transform estimation were in Mandarin, which was not thepout
language. Hence, it would appear that it is necessary to mate
we use output language distributions for estimation of soxual
speaker transforms. The language identity of adaptatiteniddess
important than that of a model set to be adapted.
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Fig. 4. Similarity score (Mandarin reference uttered by spedkgr
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Fig. 5. Similarity score (English reference uttered by spedigr

The results in Figure 4 were obtained in the EMIME scenario
— speaker similarity has to be compared between naturatkpee
L1 and synthesized speech ir2. This figure shows unsupervised
speaker adaptation is comparable to the supervised casarin bf
speaker similarity. However, Figure 5, where both natura syn-
thesized speech were in English, shows an interesting asinin
that supervised adaptation outperformed the unsupercasel We
attribute this phenomenon to human perception being affieby
language mismatch. Namely, because the prompt of a nataral E
glish utterance was the same as that of synthesized oneshasd
they were uttered with close prosody, the listeners couldeneas-
ily perceive how similar/dissimilar a synthesized uttemmas to a
natural one, and tended to grade supervised adaptatiorhigitier
scores. In the case shown by Figure 4, the language mismatdl m
it more difficult for the listeners to compare a synthesiztdrance
with a natural one. The listeners didn't think either sysihed ut-
terance (adapted supervisedly or unsupervisedly) soumdeel sim-
ilar/dissimilar to the natural one. This explanation netdse con-
firmed by further experiments and analysis.

Comparing with the cross-lingual systems *1-D and *1-M, we

didn’t observe significantly better performance of theartngual
systems. This suggests the MLLT-based speaker adaptaiibn t
nigue is able to compensate for language mismatch betwegtaad
tion data and an average voice model set fairly well.

5. CONCLUSION

We implemented unsupervised cross-lingual speaker ditaptay
combining recently developed decision tree marginatrat@nd
HMM state mapping techniques. It was observed that unsigeetv
cross-lingual speaker adaptation was comparable to thengapd
case in terms of spectrum adaptation in the EMIME scenarie. W
have observed language mismatch is the main problem fos-cros
lingual speaker adaptation, so introducing some extrantgaks to
alleviate the mismatch before speaker adaptation wouldehgh.
Since prosody plays an important role in voice charactesisis
well, we may need to pay more attention to improving prosody
adaptation in order to deal with two dissimilar languages.
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