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ABSTRACT

Many practical applications of clustering involve datalecied over
time. In these applications, evolutionary clustering carapplied
to the data to track changes in clusters with time. In thisspape
consider an evolutionary version of spectral clusterirag tipplies
a forgetting factor to past affinities between data point$ aggre-

gates them with current affinities. We propose to use an asapt

forgetting factor and provide a method to automaticallyas®this
forgetting factor at each time step. We evaluate the pedona of
the proposed method through experiments on synthetic ahdata
and find that, with an adaptive forgetting factor, we are ableb-
tain improved clustering performance compared to a fixegefiting
factor.

Index Terms— Clustering methods, temporal smoothing.

1. INTRODUCTION

In many practical applications, we wish to cluster data tizae been
collected at regular time intervals and obtain a clusterggylt at
each time step. This situation arises in segmentation ofjacsee
of images of a dynamic scene, identifying changes in the conity
structure of a social network, and many other applicatiori;mance,
biomedical signal processing and bioinformatics. A naipproach
to this problem is to perform clustering at each time stepgisinly
the most recent data. This method is often referred to asrimental
clustering and has two main disadvantages: it is extrenegigitve
to noise, and it also produces clustering results that astable and
inconsistent with clustering results from previous timepst
Typically in these types of applications, the statisticalperties

of the data to be clustered evolve over time. The goal of evolu

tionary clustering is to separate this evolution from stierin vari-
ation in the data due to noisy samples. Ideally, the clusieesults
should be smooth over time yet still capture any drifts indtagisti-
cal properties of the data. In order to produce clusterisglts that

are smooth over time, past data should be used in some manner.
Frameworks for evolutionary clustering have been propased

previous studies [1, 2, 3]. We adopt an evolutionary extan$or
spectral clustering proposed in [2] that takes a convex @aeion
of current and past affinities between data points as the togie
traditional spectral clustering algorithm. The weightdhia convex
combination act as a forgetting factor applied to past aiisi To

the best of our knowledge, no methods have yet been propased o

how to choose the forgetting factor. A forgetting factortttsatoo
large will lead to a clustering algorithm that is slow to dettevolu-
tions in the data, while a forgetting factor that is too srmall lead
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to unstable clustering results. Therefore, a good choidergétting
factor is essential to obtain good clustering results.

In this paper, we propose to use an adaptive (time-varyiog) f
getting factor in the evolutionary spectral clusteringgadure. We
develop a method for estimating the optimal forgettingdaet each
time step using a shrinkage approach. Our method is inspir¢de
Ledoit-Wolf shrinkage estimator for covariance matricés [

We evaluate the performance of our adaptive forgettingfam
synthetic and real data and find that it outperforms fixedeftiiog
factors as well as incremental clustering. In particuldathwa fixed
forgetting factor, there is a trade-off between smoothiéstuster-
ing results over time and lag in detecting changes in clast&y
allowing the forgetting factor to vary with time, we can aare both
objectives to obtain improved clustering performance.

2. BACKGROUND

2.1. Spectral clustering

Spectral clustering is a popular modern clustering tearmigspired
by spectral graph theory and often performs better tharitiwadl
clustering methods such as K-means. We provide a brief awerv
of spectral clustering and refer interested readers tod6hfmore
detailed account.

The first step in spectral clustering is to create a simjlayigph
with vertices corresponding to the data points to be clestend
edges corresponding to the affinities between data poihis.gfaph
can be represented by an adjacency mdfrixalso commonly re-
ferred to as an affinity matrix, where;; denotes the edge weight
or affinity between vertices and j. We represent the data by an
n X p matrix X, with rows corresponding to data points and columns
to features. The affinities);; are given by a positive semi-definite
similarity function s(x;, x;), wherex; denotes theth row of X.
Two common choices for the similarity function are the daidarct
s(xi,%;) = x;x;° and the Gaussian similarity functiefx;, x;) =
exp (—||xi — x;]|5/(20°)) wheres is a positive scaling parameter.
Define the degree matrik = diag(W1,) wherediag(-) creates
a diagonal matrix from its vector argument, ahdis a vector ofn
ones. Spectral clustering aims to solve the following oftation
problem overy’:

k T
- 1 yi Wyi
maximize knassoc(Y) = k2 37Dy, )
subjectto Y e {0, 1}™** 2
Yig = 1n, (3)

wherey; denotes théth column ofY’, andk is the number of clus-
ters to divide the data into.



In short, the problem is one of finding an optimal graph parti-

tion which maximizes the ratio of the sum of edge weights leetw
vertices in the same clustér; to the sum of edge weights between
any two vertices where one vertex is@h. This is an NP-hard prob-
lem as noted in [6]. The spectral clustering solution ineslVirst
relaxing constraint (2), solving the resulting continuampimiza-
tion problem, and finally, discretizing the solution to dbta near
global-optimal graph partition [5]. We represent the pinti by an

n x k partition matrixY” wherey;; = 1 if vertexi is in clusterj and
yi; = 0 otherwise.

2.2. Related work

Evolutionary clustering is an area that has gained inteszsintly

truth to compare to, so we cannot simply perform cross-aéit to
choose the optimak. We propose a method to estimate the optimal
« from the data itself.

The smoothed affinity matrik’* incorporates past affinities so
it has lower variance thal*, but it may be biased since the past
affinities may not be representative of the current ones. sTha
problem of estimating the optimal forgetting fact@rmay be con-
sidered as a bias-variance trade-off problem.

A similar bias-variance trade-off has been investigatethm
problem of shrinkage estimation of covariance matrices/[43],
where an improved estimate of the covariance matrix is tabdoe
3> = oT + (1 — a)S, a convex combination of a suitably chosen
target matrixI” and the sample covariance matfixNotice that this
has the same form as the smoothed affinity matrix given by (res

as more and more dynamic data sources become available.tSuntge smoothed affinity matrix at the previous time st&p~! plays

al. [3] proposed a method for clustering time-evolving ¢rsphow-
ever, their work was limited to unweighted graphs. Chakrtaled
al. [1] proposed evolutionary extensions of K-means andcager-
ative hierarchical clustering. Chi et al. [2] proposed twolationary
frameworks for spectral clustering, one of which we adophis pa-
per. [1, 2] both make use of a fixed smoothing parameter taabnt

the role of the shrinkage targétand the current affinity matrii/*
plays the role of the sample covariance matsix We propose to
estimate the optimal choice of using an approach similar to the
Ledoit-Wolf method of choosing: for shrinkage estimation of co-
variance matrices [4]. We describe our approach in the atlg
section.« is re-estimated at each time step, and in this manner, we

the amount of weight to be applied to past data. However, a maachieve an adaptive forgetting factor.

jor shortcoming in both works is that the question of how toase
the smoothing parameter is not addressed. In this paperavelp
a method to estimate the optimal smoothing parameter, yatnel
forgetting factor, at each time step.

3. METHODOLOGY

Similar to [4, 7, 8], we choose to optimize the squared Frobe-
nius norm of the difference between the true affinity matris ¢éhe

estimated affinity matrix. That is, we take the loss functoibe
L(a) = aW ™ + (1 —a)W' — ¥'||3. (5)

The risk function is then simply the expected loss. The nisicfion
is differentiable and can be easily optimized.

We begin by stating our assumptions. We assume that the data a

realizations from a mixture of random processes; that isael time
step, the current data are realizations from a mixture obgdodity
distributions. Furthermore, we assume that the randomepsas
which form this mixture are approximately piecewise stadiy and
that the data are measured over short enough time intehatishe
processes are approximately stationary over these igerva

3.1. Evolutionary clustering framework

Let X! denote the data matrix with rows’ corresponding to the
data points to be clustered. The supersarigénotes the time step.
The goal of our approach is to accurately estimate the trirgitsf
matrix at each time. We define the true affinity matri%® at timet
to be the expected affinity matriz [IW*], where the entries df’*

are given byw!; = s (x},x}).

In incremental spectral clusteringy’* itself is used as an es-

timate for U*. The main disadvantage of this approach is that it R(a) = Z Z {a- a)? var(wi;) + o (wh;

suffers from high variance because the estimate uses omlgntst
recent affinities. As a consequence, the obtained clugteeisults
are unstable and inconsistent with clustering results fpoavious
time steps.

We define the smoothed affinity matrix at timéo be

Wi=aW' !+ 1 —a)W?, 4)
fort > 1 andW° = WP°. The forgetting factorx controls the
amount of smoothing to be applied/* is another natural candidate
for estimating®®.

Chi et al. [2] proposed to perform evolutionary spectrabtbu-
ing by taking (4) as the input to the traditional spectralstdning
algorithm. However, the question of how to selaatvas not consid-
ered. In a truly unsupervised scenario, we do not have anyngro

3.2. Estimation of the optimal forgetting factor

First note that the risk function can be expressed as

R(a) = E[L(a)] (6)
=33k [(awl" + (1 = a)ul; - v)’] (7)

n n

= ZZ { var (awffl + (1= a)wi; — ;) +
i=1 j=1

E [(ozu’)t*l

2
i+ (1= Qwi; — i) } (8)
We treatWW'~! as a deterministic shrinkage target, so it has zero

variance. Sinc& [w};| = v};, (8) can be rewritten as

b))
i=1 j=1
From (9), the first derivative is easily seen to be
R/(a) =2 Z Z {(a -1) var(wfj) + oz(u")f{l — wfj)Q} .
i=1 j=1
(10)

To determine the optimal forgetting factar* we setR’(a) = 0.
Rearranging to isolate, we obtain

n n

Z Z var(w};)

. i=1j=1

1y

n n

SO> {wl -

i=1 j=1

Wis)? + var(wi;) }



We confirm thaitn™ minimizes risk becaus®” (a)) > 0 for all . %

Notice thata™ is not implementable because it requires knowl-

edge of the expected affinity matrik’, which is what we are trying

to estimate, as well as the variances of the entried/6f It was
suggested in [7] to replace the unknowns with their samplévag
lents. In our application, however, we cannot simply corapsay a
sample mean, by summing over all of the samples because they a
realizations from a mixture, and hence, not identicallytribsted.
Instead we should sum over all of the samples that belong to-a p Fig. 1: Setup of experiment. One component is slowly moved to-
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ticular component in the mixture, but we don’t know which gées  wards the other until they overlap slightly. The mixture godion
belong to which components; in fact, this is what we are tytim
discover by clustering!

is then altered to simulate a change in cluster membership.

To work around this problem, we estimate the component each

sample belongs to (the component memberships) alongwith an
iterative fashion. First we fix the component membershiptaking
them to be the cluster memberships at the previous time $tegn
we can sum over each cluster to estimate the entriel’aind the
variances of the entries &F* as detailed below, and substitute them
into (11) to obtain an estimat&” of o*. We then fixa™ to obtain an
updated estimate of the component memberships by subsgititit
into (4) and performing clustering div®. This process is continued

until &* converges to some value, which can be substituted into (11 1

to obtain the final smoothed affinity matri%*. Unfortunately,&*
does not always converge since cluster memberships aretgisso
the iteration should be stopped at some poitfihas not converged.

To estimate the entries df* = E [W*], we proceed as follows.
For two distinct samplesand;j both in clusterC;, we can estimate
wfj using the sample mean

At 1 ¢
Blut) = fereT -1 2 2 vk

keCileCy
l#k

(12)
where|C | denotes the number of samples in clusigr Similarly,

we estimate)?; by

3 1
E[w;;] = Al > wik

keCy

(13)

For distinct samples € C; andj € C> with C; # C>, we estimate

wfj by )
Art Z Z t

keCy lECy

(14)

The variances of the entries ®* can be estimated in a similar
manner by taking the sample variances over the clusters.

4. EXPERIMENTS

4.1. Synthetic data

We begin by testing our proposed method on synthetic dataobh
jective of this experiment is to test the effectiveness efadaptive
forgetting factor when a cluster moves close enough to anaflus-
ter so that they have significant overlap. We also test thiityabf
our method to adapt to a change in cluster membership.

The setup for this experiment is shown in Fig. 1. We genet@te
samples from a mixture of twe-D Gaussians, the first with mean
[20, 10] and the second with medh0, 20]. Both components have
the same covariance matrix, with variances equal tnd covari-
ances equal td. The mixture proportion (the proportion of samples
drawn from the first component) is initially chosen to b, so
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Fig. 2. Performance comparison for varying

From time stepd to 8, we move the mean of the second compo-
nent towards the first one by, d2|, whered; andd, are indepen-
dentN(1,1) andN(—1, 1), respectively. At time stepsand8, we
switch the mixture proportion t8/8 and1/4, respectively, to simu-
late points changing cluster. From time sgepnwards, the mixture
components are kept stationary. We use the dot product asntie
larity function in this experiment.

We ran this experimerit00 times. In Fig. 2a we compare the
mean squared error (MSE) between the true affinity matrixthad
estimated affinity matrices for five different choicesagfincluding
a = 0, which corresponds to incremental spectral clusteringe Th
error is taken to be the Frobenius norm of the difference eetwihe
true and estimated affinity matrices. It can be seen thattbiee of
« affects MSE significantly and that both the adaptiveand fixed
a = 2/3 come close to achieving the optimal MSE. In Fig. 2b we
compare the adjusted Rand index [9] between the clusteeisigts
and true component memberships for four different choi€¢esand
an incremental version of the well-known K-means algorithror
clarity, « = 0 has been left out of the figure, but it performs roughly
the same as incremental K-means. Agdihanda = 2/3 perform
well. Notice that around time stepsand9 when the true component
memberships change,= 1/3 and incremental K-means temporar-
ily perform better than the other choicescf This represents a lag
in detecting the change in mixture proportion and is a consece
of the temporal smoothing. However, after only three timepst
&* anda = 2/3 catch up to and outperform = 1/3 and incre-
mental K-means, so the lag is minimal. From this experimiengn
be seen that overall clustering performance is quite Seadi the
choice ofa, so a method for identifying a good choice such as the

that an equal number of samples is drawn from each componentne proposed in this paper is crucial for good performance.
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Fig. 3: @* and cluster change proportion for the MIT reality data set. Fig. 4. Comparison of cluster change proportion for varying
Each time step corresponds to a two-week interval.

indicate that our proposed method outperforms fixed farugtac-
4.2. Real data tors and incremental clustering. By using an adaptive ttirge
factor, we were able to obtain temporally smooth clusteragwylts
We also test our proposed method on a publicly available sitta  as well as detect sudden changes with minimal lag, whichataran
the MIT reality mining data set [10]. The data was collectgtd b simultaneously achieved with a fixed forgetting factor.
recording cell phone activity of one hundred students awdlfi Future research directions include a convergence analf/sisr
at MIT for over a year. In particular, we make use of the deviceiterative method for estimating the optimal forgettingtéacand in-
span data, which recorded the times at which each cell phase w vestigating methods for dealing with new vertices beingoeuced
in proximity to another Bluetooth device. Our study focusesthe into the similarity graph at some time step as well as exgstartices
time period from September 9, 2004 to March 25, 2005 becdugse t leaving the graph.
volume of logged activities was very low prior to the begirgiof
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