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ABSTRACT

Many practical applications of clustering involve data collected over
time. In these applications, evolutionary clustering can be applied
to the data to track changes in clusters with time. In this paper, we
consider an evolutionary version of spectral clustering that applies
a forgetting factor to past affinities between data points and aggre-
gates them with current affinities. We propose to use an adaptive
forgetting factor and provide a method to automatically choose this
forgetting factor at each time step. We evaluate the performance of
the proposed method through experiments on synthetic and real data
and find that, with an adaptive forgetting factor, we are ableto ob-
tain improved clustering performance compared to a fixed forgetting
factor.

Index Terms— Clustering methods, temporal smoothing.

1. INTRODUCTION

In many practical applications, we wish to cluster data thathave been
collected at regular time intervals and obtain a clusteringresult at
each time step. This situation arises in segmentation of a sequence
of images of a dynamic scene, identifying changes in the community
structure of a social network, and many other applications in finance,
biomedical signal processing and bioinformatics. A naı̈veapproach
to this problem is to perform clustering at each time step using only
the most recent data. This method is often referred to as incremental
clustering and has two main disadvantages: it is extremely sensitive
to noise, and it also produces clustering results that are unstable and
inconsistent with clustering results from previous time steps.

Typically in these types of applications, the statistical properties
of the data to be clustered evolve over time. The goal of evolu-
tionary clustering is to separate this evolution from short-term vari-
ation in the data due to noisy samples. Ideally, the clustering results
should be smooth over time yet still capture any drifts in thestatisti-
cal properties of the data. In order to produce clustering results that
are smooth over time, past data should be used in some manner.

Frameworks for evolutionary clustering have been proposedin
previous studies [1, 2, 3]. We adopt an evolutionary extension for
spectral clustering proposed in [2] that takes a convex combination
of current and past affinities between data points as the input to the
traditional spectral clustering algorithm. The weights inthe convex
combination act as a forgetting factor applied to past affinities. To
the best of our knowledge, no methods have yet been proposed on
how to choose the forgetting factor. A forgetting factor that is too
large will lead to a clustering algorithm that is slow to detect evolu-
tions in the data, while a forgetting factor that is too smallwill lead
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to unstable clustering results. Therefore, a good choice offorgetting
factor is essential to obtain good clustering results.

In this paper, we propose to use an adaptive (time-varying) for-
getting factor in the evolutionary spectral clustering procedure. We
develop a method for estimating the optimal forgetting factor at each
time step using a shrinkage approach. Our method is inspiredby the
Ledoit-Wolf shrinkage estimator for covariance matrices [4].

We evaluate the performance of our adaptive forgetting factor on
synthetic and real data and find that it outperforms fixed forgetting
factors as well as incremental clustering. In particular, with a fixed
forgetting factor, there is a trade-off between smoothnessof cluster-
ing results over time and lag in detecting changes in clusters. By
allowing the forgetting factor to vary with time, we can achieve both
objectives to obtain improved clustering performance.

2. BACKGROUND

2.1. Spectral clustering

Spectral clustering is a popular modern clustering technique inspired
by spectral graph theory and often performs better than traditional
clustering methods such as K-means. We provide a brief overview
of spectral clustering and refer interested readers to [5] for a more
detailed account.

The first step in spectral clustering is to create a similarity graph
with vertices corresponding to the data points to be clustered and
edges corresponding to the affinities between data points. This graph
can be represented by an adjacency matrixW , also commonly re-
ferred to as an affinity matrix, wherewij denotes the edge weight
or affinity between verticesi and j. We represent the data by an
n×pmatrixX, with rows corresponding to data points and columns
to features. The affinitieswij are given by a positive semi-definite
similarity function s(xi,xj), wherexi denotes theith row of X.
Two common choices for the similarity function are the dot product
s(xi,xj) = xixj

T and the Gaussian similarity functions(xi,xj) =
exp

(

−‖xi − xj‖
2

2/(2σ
2)
)

whereσ is a positive scaling parameter.
Define the degree matrixD = diag(W 1n) wherediag(·) creates
a diagonal matrix from its vector argument, and1n is a vector ofn
ones. Spectral clustering aims to solve the following optimization
problem overY :

maximize knassoc(Y ) =
1

k

k
∑

i=1

yi
TWyi

yi
TDyi

(1)

subject to Y ∈ {0, 1}n×k (2)

Y 1k = 1n, (3)

whereyi denotes theith column ofY , andk is the number of clus-
ters to divide the data into.



In short, the problem is one of finding an optimal graph parti-
tion which maximizes the ratio of the sum of edge weights between
vertices in the same clusterCi to the sum of edge weights between
any two vertices where one vertex is inCi. This is an NP-hard prob-
lem as noted in [6]. The spectral clustering solution involves first
relaxing constraint (2), solving the resulting continuousoptimiza-
tion problem, and finally, discretizing the solution to obtain a near
global-optimal graph partition [5]. We represent the partition by an
n× k partition matrixY whereyij = 1 if vertex i is in clusterj and
yij = 0 otherwise.

2.2. Related work

Evolutionary clustering is an area that has gained interestrecently
as more and more dynamic data sources become available. Sun et
al. [3] proposed a method for clustering time-evolving graphs; how-
ever, their work was limited to unweighted graphs. Chakrabarti et
al. [1] proposed evolutionary extensions of K-means and agglomer-
ative hierarchical clustering. Chi et al. [2] proposed two evolutionary
frameworks for spectral clustering, one of which we adopt inthis pa-
per. [1, 2] both make use of a fixed smoothing parameter to control
the amount of weight to be applied to past data. However, a ma-
jor shortcoming in both works is that the question of how to choose
the smoothing parameter is not addressed. In this paper, we provide
a method to estimate the optimal smoothing parameter, namely the
forgetting factor, at each time step.

3. METHODOLOGY

We begin by stating our assumptions. We assume that the data are
realizations from a mixture of random processes; that is, ateach time
step, the current data are realizations from a mixture of probability
distributions. Furthermore, we assume that the random processes
which form this mixture are approximately piecewise stationary and
that the data are measured over short enough time intervals that the
processes are approximately stationary over these intervals.

3.1. Evolutionary clustering framework

Let Xt denote the data matrix with rowsxt
i corresponding to the

data points to be clustered. The superscriptt denotes the time step.
The goal of our approach is to accurately estimate the true affinity
matrix at each timet. We define the true affinity matrixΨt at timet
to be the expected affinity matrixE

[

W t
]

, where the entries ofW t

are given bywt
ij = s

(

x
t
i ,x

t
j

)

.
In incremental spectral clustering,W t itself is used as an es-

timate forΨt. The main disadvantage of this approach is that it
suffers from high variance because the estimate uses only the most
recent affinities. As a consequence, the obtained clustering results
are unstable and inconsistent with clustering results fromprevious
time steps.

We define the smoothed affinity matrix at timet to be

W̄ t = αW̄ t−1 + (1− α)W t, (4)

for t ≥ 1 and W̄ 0 = W 0. The forgetting factorα controls the
amount of smoothing to be applied.̄W t is another natural candidate
for estimatingΨt.

Chi et al. [2] proposed to perform evolutionary spectral cluster-
ing by taking (4) as the input to the traditional spectral clustering
algorithm. However, the question of how to selectα was not consid-
ered. In a truly unsupervised scenario, we do not have any ground

truth to compare to, so we cannot simply perform cross-validation to
choose the optimalα. We propose a method to estimate the optimal
α from the data itself.

The smoothed affinity matrix̄W t incorporates past affinities so
it has lower variance thanW t, but it may be biased since the past
affinities may not be representative of the current ones. Thus the
problem of estimating the optimal forgetting factorα may be con-
sidered as a bias-variance trade-off problem.

A similar bias-variance trade-off has been investigated inthe
problem of shrinkage estimation of covariance matrices [4,7, 8],
where an improved estimate of the covariance matrix is takento be
Σ̂ = αT + (1 − α)S, a convex combination of a suitably chosen
target matrixT and the sample covariance matrixS. Notice that this
has the same form as the smoothed affinity matrix given by (4) where
the smoothed affinity matrix at the previous time stepW̄ t−1 plays
the role of the shrinkage targetT and the current affinity matrixW t

plays the role of the sample covariance matrixS. We propose to
estimate the optimal choice ofα using an approach similar to the
Ledoit-Wolf method of choosingα for shrinkage estimation of co-
variance matrices [4]. We describe our approach in the following
section.α is re-estimated at each time step, and in this manner, we
achieve an adaptive forgetting factor.

Similar to [4, 7, 8], we choose to optimize the squared Frobe-
nius norm of the difference between the true affinity matrix and the
estimated affinity matrix. That is, we take the loss functionto be

L(α) = ‖αW̄ t−1 + (1− α)W t −Ψt‖2F . (5)

The risk function is then simply the expected loss. The risk function
is differentiable and can be easily optimized.

3.2. Estimation of the optimal forgetting factor

First note that the risk function can be expressed as

R(α) = E [L(α)] (6)

=
n
∑

i=1

n
∑

j=1

E
[

(
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)2
]
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)

+

E
[(
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ij − ψt

ij
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}

. (8)

We treatW̄ t−1 as a deterministic shrinkage target, so it has zero
variance. SinceE

[

wt
ij

]

= ψt
ij , (8) can be rewritten as

R(α) =

n
∑

i=1

n
∑

j=1

{

(1− α)2 var(wt
ij) + α2(w̄t−1

ij − ψt
ij)

2
}

. (9)

From (9), the first derivative is easily seen to be

R′(α) = 2
n
∑

i=1

n
∑

j=1

{

(α− 1) var(wt
ij) + α(w̄t−1

ij − ψt
ij)

2
}

.

(10)
To determine the optimal forgetting factorα∗ we setR′(α) = 0.
Rearranging to isolateα, we obtain

α∗ =

n
∑

i=1

n
∑

j=1

var(wt
ij)

n
∑

i=1

n
∑

j=1

{

(w̄t−1

ij − ψt
ij)

2 + var(wt
ij)

}

. (11)



We confirm thatα∗ minimizes risk becauseR′′(α) ≥ 0 for all α.
Notice thatα∗ is not implementable because it requires knowl-

edge of the expected affinity matrixΨt, which is what we are trying
to estimate, as well as the variances of the entries ofW t. It was
suggested in [7] to replace the unknowns with their sample equiva-
lents. In our application, however, we cannot simply compute, say a
sample mean, by summing over all of the samples because they are
realizations from a mixture, and hence, not identically distributed.
Instead we should sum over all of the samples that belong to a par-
ticular component in the mixture, but we don’t know which samples
belong to which components; in fact, this is what we are trying to
discover by clustering!

To work around this problem, we estimate the component each
sample belongs to (the component memberships) along withα∗ in an
iterative fashion. First we fix the component memberships bytaking
them to be the cluster memberships at the previous time step.Then
we can sum over each cluster to estimate the entries ofΨt and the
variances of the entries ofW t as detailed below, and substitute them
into (11) to obtain an estimatêα∗ of α∗. We then fixα̂∗ to obtain an
updated estimate of the component memberships by substituting it
into (4) and performing clustering on̄W t. This process is continued
until α̂∗ converges to some value, which can be substituted into (11)
to obtain the final smoothed affinity matrix̄W t. Unfortunately,α̂∗

does not always converge since cluster memberships are discrete, so
the iteration should be stopped at some point ifα̂∗ has not converged.

To estimate the entries ofΨt = E
[

W t
]

, we proceed as follows.
For two distinct samplesi andj both in clusterC1, we can estimate
ψt

ij using the sample mean

Ê[wt
ij ] =

1

|C1| (|C1| − 1)

∑

k∈C1

∑

l∈C1

l 6=k

wt
kl (12)

where|C1| denotes the number of samples in clusterC1. Similarly,
we estimateψt

ii by

Ê[wt
ii] =

1

|C1|

∑

k∈C1

wt
kk. (13)

For distinct samplesi ∈ C1 andj ∈ C2 with C1 6= C2, we estimate
ψt

ij by

Ê[wt
ij ] =

1

|C1||C2|

∑

k∈C1

∑

l∈C2

wt
kl. (14)

The variances of the entries ofW t can be estimated in a similar
manner by taking the sample variances over the clusters.

4. EXPERIMENTS

4.1. Synthetic data

We begin by testing our proposed method on synthetic data. The ob-
jective of this experiment is to test the effectiveness of the adaptive
forgetting factor when a cluster moves close enough to another clus-
ter so that they have significant overlap. We also test the ability of
our method to adapt to a change in cluster membership.

The setup for this experiment is shown in Fig. 1. We generate40
samples from a mixture of two2-D Gaussians, the first with mean
[20, 10] and the second with mean[10, 20]. Both components have
the same covariance matrix, with variances equal to2 and covari-
ances equal to1. The mixture proportion (the proportion of samples
drawn from the first component) is initially chosen to be1/2, so
that an equal number of samples is drawn from each component.
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Fig. 1: Setup of experiment. One component is slowly moved to-
wards the other until they overlap slightly. The mixture proportion
is then altered to simulate a change in cluster membership.
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Fig. 2: Performance comparison for varyingα.

From time steps1 to 8, we move the mean of the second compo-
nent towards the first one by[d1, d2], whered1 andd2 are indepen-
dentN(1, 1) andN(−1, 1), respectively. At time steps7 and8, we
switch the mixture proportion to3/8 and1/4, respectively, to simu-
late points changing cluster. From time step9 onwards, the mixture
components are kept stationary. We use the dot product as thesimi-
larity function in this experiment.

We ran this experiment500 times. In Fig. 2a we compare the
mean squared error (MSE) between the true affinity matrix andthe
estimated affinity matrices for five different choices ofα, including
α = 0, which corresponds to incremental spectral clustering. The
error is taken to be the Frobenius norm of the difference between the
true and estimated affinity matrices. It can be seen that the choice of
α affects MSE significantly and that both the adaptiveα̂∗ and fixed
α = 2/3 come close to achieving the optimal MSE. In Fig. 2b we
compare the adjusted Rand index [9] between the clustering results
and true component memberships for four different choices of α and
an incremental version of the well-known K-means algorithm. For
clarity,α = 0 has been left out of the figure, but it performs roughly
the same as incremental K-means. Again,α̂∗ andα = 2/3 perform
well. Notice that around time steps8 and9 when the true component
memberships change,α = 1/3 and incremental K-means temporar-
ily perform better than the other choices ofα. This represents a lag
in detecting the change in mixture proportion and is a consequence
of the temporal smoothing. However, after only three time steps,
α̂∗ andα = 2/3 catch up to and outperformα = 1/3 and incre-
mental K-means, so the lag is minimal. From this experiment,it can
be seen that overall clustering performance is quite sensitive to the
choice ofα, so a method for identifying a good choice such as the
one proposed in this paper is crucial for good performance.
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Fig. 3: α̂∗ and cluster change proportion for the MIT reality data set.
Each time step corresponds to a two-week interval.

4.2. Real data

We also test our proposed method on a publicly available dataset:
the MIT reality mining data set [10]. The data was collected by
recording cell phone activity of one hundred students and faculty
at MIT for over a year. In particular, we make use of the device
span data, which recorded the times at which each cell phone was
in proximity to another Bluetooth device. Our study focuseson the
time period from September 9, 2004 to March 25, 2005 because the
volume of logged activities was very low prior to the beginning of
the school year and near the end of the study in May 2005. The data
was split into2-week intervals, resulting in15 time steps of data.
We remove users who were not in proximity to any others. Again,
we use the dot product as the similarity function in this experiment.

In Fig. 3 we show the estimated forgetting factorα̂∗ at each time
step as well as the cluster change proportion (proportion ofusers
who changed cluster). As with most real data sets, we do not have
true cluster memberships to compare the clustering resultsto, so we
try to correlate cluster changes to real events. Notice thatthere are
two sudden decreases in̂α∗. These correspond to the two-week in-
tervals beginning on December 16, 2004 and February 10, 2005,
respectively. From the MIT academic calendar [11], we see that
these correlate with the end of the fall term and the beginning of the
spring term. Around these time steps, the cluster change ratio in-
creases significantly, indicating that social patterns changed at these
times, which makes sense because they mark the start and end of the
winter holidays.

In Fig. 4 we plot the cluster change proportion for both the adap-
tive α̂∗ and two fixed values ofα. The adaptivêα∗ provides both ex-
cellent smoothing during the school terms and is also able todetect
both change periods, albeit with a slight lag. Fixingα = 2/3 results
in discovering only a single period of cluster change, whichis a con-
sequence of over-smoothing. On the other hand, fixingα = 1/3
results in discovering both change periods but with a highercluster
change proportion during the school terms when the clustersshould
be relatively stable. This marks a clear drawback of choosing a fixed
α, namely that one must trade off smoothing ability over periods
where there is little to no change in the true cluster memberships
with change detection ability when significant changes in the clus-
ter memberships occur. With an adaptive forgetting factor,there is
no such limitation. Hence our proposed method should be ableto
outperform fixed forgetting factors.

5. CONCLUSIONS

In this paper, we proposed a method for automatically selecting the
forgetting factor applied to past affinities in evolutionary spectral
clustering. Our proposed method produced an adaptive (time-
varying) forgetting factor. Experiments on synthetic and real data
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Fig. 4: Comparison of cluster change proportion for varyingα.

indicate that our proposed method outperforms fixed forgetting fac-
tors and incremental clustering. By using an adaptive forgetting
factor, we were able to obtain temporally smooth clusteringresults
as well as detect sudden changes with minimal lag, which cannot be
simultaneously achieved with a fixed forgetting factor.

Future research directions include a convergence analysisof our
iterative method for estimating the optimal forgetting factor and in-
vestigating methods for dealing with new vertices being introduced
into the similarity graph at some time step as well as existing vertices
leaving the graph.
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