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ABSTRACT
Besides basis expansions, frames representations play a key role in
signal processing. We thus consider the problem of frame domain
signal processing, which is more complex and challenging than trans-
form domain processing. Examples of such processing abound, from
overlap-add/save convolution, to frequency domain LMS, and frame
magnitude reconstruction. We develop a unified view of all these sit-
uations by using a common Hilbert space view of the problem, and
consider algorithms in this common framework. In addition to a syn-
thetic view of multiple signal processing methods in frames, we de-
rive several original results. This include a direct solution to spectral
modification (which usually uses an iterative algorithm) and a unicity
condition for reconstruction from frame coefficient magnitudes.

Index Terms— frames, orthogonal projection, spectral modifi-
cation, short-time Fourier transform.

1. INTRODUCTION AND MOTIVATION

Frames have become one of the basic tools in signal representation
and processing [1]. Many standard procedures used in speech pro-
cessing, adaptive filtering and image processing, to name just a few,
can be phrased in frame domain. But unlike orthonormal or biorthog-
onal basis representations, frame representations are constrained by
the range of the frame operator. That is, given an analysis frame
F ∗ and X = F ∗x then X ∈ Range(F ∗) and any processing of
X needs to take this into account. More precisely, if x ∈ R

N and
S the subspace of R

M (M > N ) given by S = Range(F ∗),
then a change of X, or X = X + ΔX, can be decomposed into
ΔX = ΔXS +ΔXS⊥ , of which only ΔXS will have an effect after
reconstruction by a dual frame F †, or x = F †X = F †(X +ΔXS +
ΔXS⊥) = x + F †ΔXS .

These elementary facts on frame analysis and reconstruction are
sometimes hidden inside sophisticated signal processing algorithms.
Also, finding ΔXS closest to a desired modification ΔX is often
performed using an iterative algorithm [2]. In addition, a number
of signal processing tasks deal with the magnitude of frame coeffi-
cients, which poses both theoretical and algorithmic challenges. For
example, is the magnitude representation unique (up to a global sign
change) and are there efficient ways to reconstruct x or X given the
magnitude of the entries of X?

The present paper has therefore several goals, from the theory
to the practice, but also from the synthetic view to the pedagogical
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exposition. In Section 2, after establishing basic frame facts and no-
tations, we gather various signal processing tasks that are performed
in frame domain under a single framework. This ranges from run-
ning convolution algorithms (overlap-add/save), to adaptive filtering
(frequency-domain LMS), to spectral domain modifications (spectral
shaping) and reconstruction from spectrum magnitude. Then, in Sec-
tion 3, we consider linear modifications and derive an exact operator
for a one step solution instead of iterative solutions. This leads to sub-
stantial computational savings. In Section 4, we address the problem
of frame representations where only the magnitude of the frame coef-
ficients are kept. This is standard for example in spectrograms. This
raises the question of uniqueness of such a representation, which is
settled with a necessary and sufficient condition. Given this condition
being satisfied, we propose an algorithm to reconstruct the unique X
from its magnitude. All along, we work both with a very small frame
(the archetypal Mercedes-Benz frame) as well as with a medium size
short-time Fourier transform (STFT) frame , the first for pedagogical
reasons, and the second because of its high relevance in practice.

2. FRAME SIGNAL PROCESSING

2.1. Frame Basics and Definitions

Frames are redundant sets of spanning vectors in a given Hilbert
space H. In this work, we only consider finite dimensional Hilbert
spaces (RN , CN ). Given a redundant spanning set of vectors F =
{fm}M−1

m=0 , fm ∈ C
N , M > N , we associate to it an N × M ma-

trix (operator) which we will also call F whose m-th column is the
frame vector fm; this is known as the synthesis frame operator. Let
F ∗ be the analysis operator that maps C

N into C
M such that for any

x ∈ C
N and m = 0, . . . , M − 1, Xm = (F ∗x)m = 〈x, fm〉 rep-

resents the m-th frame coefficient of x. By definition of a frame, for
any x ∈ C

N , the norm of X is bounded from the left and from the
right. To reconstruct a signal x from its frame coefficients, we need
to use the pseudo-inverse F † = (FF ∗)−1F such that F †F ∗ = I
(identity matrix) to obtain x = F †X.

A particular class of interest are tight frames (TFs) which can be
seen as a generalization of orthonormal bases (ONBs). These frames
are self-dual such that FF ∗ = AI , and norm preserving (up to the
constant A), in which case they are called A-tight. Moreover, if F
is a finite dimensional tight frame, then its rows are orthogonal with
constant norm. Throughout this paper, S will denote the range of F ∗,
PS = F ∗(FF ∗)−1F the -orthogonal- projection onto S and H⊥ the
orthogonal complement of a subspace H .
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2.2. Examples of Frame Domain Signal Processing

Many signal processing tasks use frames and process signals in the
frame domain. For example, in running convolution algorithms,
known as overlap-add/overlap-save [3], the goal is to compute a lin-
ear convolution y = x ∗ g using circular convolution,assuming
x, g are of finite length N, L respectively, . This is possible
when the period of the circular convolution M is such that M ≥
N + L − 1. Assume that DFT is the discrete Fourier trans-
form matrix of size M , F ∗

x the frame consisting of the first N
vectors of DFT , and F ∗

g the frame consisting of the first vec-
tor of DFT and the last L − 1 vectors of DFT in reverse or-
der. Then, we can compute the result of the linear convolution as
y = DFT ∗diag(F ∗

g G)F ∗
x x, where G is an M -dimensional vector

such that G = [g0, 0, . . . , 0, gL−1, gL−2, . . . , g1]
�, and diag(F ∗

g G)
puts the elements of G in a diagonal matrix. Therefore, if we are to
modify the elements of G, we should do it on Range(F ∗

g ). Likewise,
in frequency domain adaptive filtering (LMS), one cannot modify G
outside of the range of F ∗

g for risk of obtaining a filter g of full length
(M ) leading to wrap around effects. Current frequency domain LMS
algorithm make use of this fact by either driving the optimization on
the range itself [4] (so called “unconstrained” algorithm), or driv-
ing the optimization in the M -dimensional space then projecting
onto the range [5] (so called “constrained” algorithm). Spectrogram
modifications [2, 6], such as reconstruction from the magnitude of
spectrum coefficients, is another set of applications with an under-
lying frame range. In [2], the authors present two POCS-based
algorithms to estimate a signal either from its spectral coefficients or
from their magnitude. Balan et. al [7] present fast algorithms for the
reconstruction from magnitude of frame coefficients. These are in
polynomial time and linear time for specific frames families. They
also derive sufficient conditions on the size of the frame to obtain
uniqueness of the reconstruction (up to unimodular constants). These
consist of M ≥ 2N − 1 for the real case and M ≥ 4N − 2 for the
complex case.

Within the “analysis-modification-synthesis” framework, modi-
fications in the frame domain can be divided into two main classes,
linear and nonlinear ones. In the next section, we study the effect of
the former and derive an efficient way to apply linear changes in the
spectral domain before reconstruction.

3. LINEAR MODIFICATIONS IN THE FRAME DOMAIN

In the problem of linear modifications, we aim at changing the trans-
form coefficients using a linear operator, or, project F ∗x onto a linear
subspace H . However, projecting once leads, in general, to a solution
that is not consistent, namely PHF ∗x /∈ S. For instance, suppose we
want to annul some frequency regions in the spectrogram of an ex-
cerpt of an audio signal x. Then, the frame coefficients in the said
region will “raise from the dead”. As an example, let us choose a
Hanning window of length N/2 with 50% overlap and 8 frequency
bins, then Fig. 1 depicts the original spectrogram for N = 16 sam-
ples of Ravel’s Boléro (sampled at Fs = 44.1KHz) and its modified
spectrogram after annihilating some frequency region, reconstructing
and finally analyzing it again using the same STFT. It is clear that
the frame coefficients in the specified frequency region are not equal
to zero anymore. It is also important to recall that due to the lin-
ear dependence of frame vectors, having some frame coefficients be
zero will affect the rest of them. In fact, this is true for any type of
modification.

Given a signal x ∈ C
N , a frame F ∗ for C

N such that X =
F ∗x, X ∈ C

M and M > N . For example, F ∗ is an STFT frame
and X are the corresponding spectral coefficients of x. Let H be the

S

H

X

D X̂

PD

Fig. 2. Example of alternating projections for N = 2, M = 3, where
H is the XY -plane, S a given plane and D = S ∩ H a line on the
XY -plane intersecting S.

desired subspace (for example, H is such that Xi = 0 for i ∈ I, a
predefined subset of indices). We would like to find the X̂ , the closest
point to X in H , yet, as argued earlier, we also need a consistent
solution such that X̂ corresponds to an actual signal x̂ ∈ C

N , that is,
we also want X̂ to be in the range of F ∗, called S. Therefore, if we
let D = S ∩ H , we formulate our problem as follows: find X̂ ∈ D

such that X̂ = minY ∈D ‖X − Y ‖, namely, we want to find x̂ =

F †PDF ∗x. There are two ways to reach X̂: Either by alternating
projections between the range of the analysis frame and the subspace
H , or via projecting directly onto the intersection D = S ∩ H .

3.1. Alternating Projections

The method of alternating projections is widely used in signal pro-
cessing applications as it is proven to converge to the optimal point
as long as the subspaces are closed convex sets and their intersection
is not empty [8]. Specifically, assume S ∩ H 	= ∅ and X(0) = F ∗x
for some x ∈ R

N . Then, the sequence X(k+1) = PSPHX(k)

converges in norm to X̂ = PDX(0) when k → ∞; and x̂ =

F †X̂. This algorithm yields the optimal solution but its rate of con-
vergence depends on the principal angles between S and H . Indeed,
if α is the principal angle between S and H such that cos(α) =
sup{〈X, Y 〉, X ∈ S ∩ H⊥, Y ∈ H ∩ S⊥, ‖X‖, ‖Y ‖ ≤ 1}, then
Aronszajn [9] proved that for any X ∈ R

M , we have ‖(PSPH)kX−

PDX‖ ≤ cos (α)2k−1‖X‖. Namely, the rate of convergence de-
creases as cos (α)2k−1. Fig. 2 shows an example of alternating pro-
jections for N = 2, M = 3, where H is the XY -plane, S a given
plane and D = S ∩ H a line on the XY -plane intersecting S. We
start from a point X ∈ S then project it onto H and then project onto
S. We repeat this process until we reach X̂ that lies on the line D.

In summary, this method not only yields the closest point in D =
S ∩ H but also converges in norm. However, the dependence of its
rate of convergence on the principal angles between the subspaces
might lead to an inefficient and very slow algorithm.

3.2. One-step Projection

To circumvent the disadvantages of the alternating projections meth-
ods, we seek to build the projection PD onto D, the intersection of
the frame range S with the desired subspace H . Using the orthog-
onal projection onto D ensures that X̂ ∈ D is the closest point to
X ∈ S. Let us now derive a closed-form formula for the projection
operator on D, yielding an efficient one-step projection algorithm to
reach the optimal point X̂ in the frame domain. Given H ⊆ C

M ,
let Q : C

M → H⊥ be the projection onto the orthogonal com-
plement of H such that Range(Q) = H⊥. Then, the null space
of QF ∗, denoted by N (QF ∗), is the set of vectors in C

M whose
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Fig. 1. Frame coefficients raising from the dead. (a) Original spectrogram, (b) Frequency region annihilated, (c) New spectrogram after one
iteration of the alternating projections method, (d) Spectrogram after using the one-step projection, (c) Rate of convergence of the alternating
method projection.

frame coefficients are orthogonal to the Range(Q) = H⊥, there-
fore, N (QF ∗) = {x ∈ C

N , QF ∗x ∈ H}. Hence, our problem con-
sists of finding a basis (in C

N ) for N (QF ∗), or equivalently, build
the projection P onto N (QF ∗).

For instance, suppose that we want to set a number of frame coef-
ficients to zero before we reconstruct the signal (this could be thought
of as some denoising process), and assume that I ⊂ {1, . . . , M} is
the subset of indices for which X̂i = 0, i ∈ I and let I have car-
dinality |I| (dimension of H⊥). Note that in general, it is expected
that X̂i 	= Xi, for i /∈ I, due to the linear dependence of the frame
vectors. Let Q be the operator on C

M such that (QX)i = 0 for
X = F ∗x and i ∈ I. From a different perspective, this prob-
lem amounts to looking for x̂ ∈ C

N such that 〈x̂, fi〉 = 0 for
i ∈ I, that is, we would like to find x̂ ∈ (span{fi}i∈I)⊥. Us-
ing N (QF ∗) = Range(FQ∗)⊥, one can then easily check that in
this particular case, we indeed have N (QF ∗) = (span{fi}i∈I)⊥.
Returning to the more general set up, the projection P onto N (QF ∗)
can be written as

P = I − FQ∗(QF ∗FQ∗)−1QF ∗, (1)

where I is the identity matrix in R
N . To have a stable projection,

it is necessary that K ≤ N (otherwise, we can only reconstruct the
zero sequence). In fact, to write P as in (1), we need the columns of
QF ∗ to be linearly independent. Using a Gram-Schmidt procedure to
transform this spanning set for N (QF ∗) ⊆ C

N into an ONB solves
this issue. Note that when we want some spectral coefficients to be
zero, then this is equivalent to find a basis for the set {fi}i∈I .

Given that P is a projection onto a subspace of C
N , we should

use F ∗ to return to the frame domain and find the projection onto D.
Namely, D = Range(F ∗P ).

Proposition 1 Suppose G is a matrix whose columns are the basis
vectors of N (QF ∗). Then, for any frame F of size M in R

N (M >
N ), the projection onto D is

PD = F ∗G(G∗FF ∗G)−1G∗F. (2)

We can easily check that PD is indeed an orthogonal projection, as
well as PSPD = PD and PDQ∗ = 0.

Now, assume that F is an A-tight frame, then PD = 1
A

F ∗PF .
Using (1), this leads to

Proposition 2 If F is an A-tight frame for R
N , then

PD =
1

A
F ∗F (I − Q∗(QF ∗FQ∗)−1QF ∗F ). (3)

In particular, if for any X ∈ C
M , we let x̂ = 1

A
FPDX, then x̂ can

be computed as the projection P onto N (QF ∗) of the reconstruction
of x (from X), namely

x̂ =
1

A
PFX.

When X = F ∗x in the above, then x̂ = Px. Moreover, note that
when G is an ONB, PD = 1

A
(F ∗G)(F ∗G)∗, that is, PD is the frame

operator of F ∗G (up to a scalar).

Example 1 a. Mercedez-Benz frame. Let

F ∗
mb =

⎡⎢⎣ 0
√

2
3

−1√
2

−1√
6

1√
2

−1√
6

⎤⎥⎦ , then PS = 1
3

⎡⎣ 2 −1 −1
−1 2 −1
−1 −1 2

⎤⎦ .

(4)
This is the Mercedes-Benz frame for R

2. It is A-tight with A = 1
and its range S consists of the plane with normal [1, 1, 1]�. Let
X = F ∗

mbx for some x ∈ R
2 and suppose we want to find

y = [y0, y1]
� such that F ∗y = Y = [Y1, Y2, 0]

� where Y1, Y2

are as close as possible to X1, X2, respectively. This implies that
H consists of the XY -plane. Using the alternating projections
methods leads to computing X(k+1) = PSPHX(k) for increas-
ing values of k. Alternatively, we can directly compute the projec-
tion onto the intersection of S and H (see Fig. 2), or as we have
seen, compute the projection onto the orthogonal complement to
span{f3} with [ 1√

2
, −1√

6
]�. That is compute P = I − P{f3}. For

x = [−6,−3]�, we find

P =

[
1
4

√
3

4√
3

4
3
4

]
and x̂ =

[
− 6−3

√
3

4
−6

√
3−9

4

]
,

which is the same as with the alternating projections method
(which converges after k = 10 iterations for the chosen x).

b. STFT. Now let us consider the spectrogram shown in Fig. 1(a)
and described earlier in Section 3. For a signal length N = 16,
we compute 40 STFT coefficients using L = 8 frequency bins,
a Hanning window g of length Lg = N

2
and 50% overlap.

Let δ =
Lg

2
, then the frame coefficients of a signal x are

X(k, l) = 〈x, g(k, l)〉 where g(k, l) = gn−kδe
−j2πl/L for

k = −1, . . . , 3, l = 0, ...L − 1. We consider annihilating the
coefficients X(k, l) for l = 1, 2 and all k (see Fig. 1(b)), there-
fore, using the one-step projection method leads to computing the
projection onto the span of {g(k, 1), g(k, 2)}3

k=−1. The result is
shown on Fig. 1(d). Fig. 1(e) depicts the rate of convergence of
the alternating projections method as a function of the number of
iterations.
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Fig. 3. Reconstruction from magnitude for N = 2, M = 3. The
frame range S and the hyperrectangle H formed out of the 8 vertices
Y (l) = BlX. S intersects H at ±X and at two other points on the
edges of H .

4. RECONSTRUCTION FROM MAGNITUDES OF FRAME
COEFFICIENTS

Assume we have a real frame F ∗ such that X = F ∗x with x ∈
R

N , X ∈ R
M and let us consider the magnitude vector Y of the

frame expansion coefficients such that Ym = |Xm|. We ask the fol-
lowing question: When does Y uniquely determine X (up to ±X)
and thus x? Given Y , there is a set of 2M possible vectors Y (l), l =
0, . . . , 2M − 1 that share the same Y , amongst them, there is X and
−X. As X ∈ S, we can test all Y (l) for membership in S. Con-
sider the following matrices that act on the set of frame coefficients
to change their sign:

Bl = diag
[
(−1)i0 (−1)i1 . . . (−1)iM−1

]
,

where im is the m-th bit of the binary expansion of l. Then, we
have Y (l) = BlY . Therefore, given Y , we have to search for Ŷ (l)

such that Ŷ (l) = B̂lY ∈ S and if it is unique (up to ±1), then we
have found the unique solution. We need to prove that except for X
and −X, there is no other Y (l) satisfying Y (l) = PSY (l). Thus,
given that PS is a projection, X = B0X and −X = B2M−1X,
uniqueness is violated whenever there exists l ∈ {1, . . . , 2M − 2}
such that BlPSBl = PS . This test can be conducted with all 2M − 2
matrices Bl.

An equivalent argument that is rather geometrical is as follows:

Let H̃ = {Y (l)}2M −1
l=0 . That is, H̃ is the set of the summits of the

hyperrectangle H of dimension M , with vertices {±X0,±X1, . . . ,
± XM−1}. To prove uniqueness of the reconstruction (up to ±1),
we need to show that the only vertices on S are ±X. Figure 3 shows
schematically H and S for N = 2, M = 3. We observe that the inter-
section of S and H contains only 2N points, two of which are the ver-
tices ±X. If we construct the M × 2M matrix Φ whose columns are
the 2M −1 vectors ϕl = [i0, i1, . . . , iM−1]

� for l = 1, . . . , 2M −1,
then, we need to verify that none of the ϕl’s is preserved through the
operator PSΦ. Note that ϕ0, ϕ2M −1 correspond to X,−X, respec-
tively.

Proposition 3 For any real analysis frame F ∗ and the projection PS

onto its range, the reconstruction from the magnitudes of the frame
expansion coefficients is unique (up to ±1) if and only if PSΦ does
not preserve any of the columns ϕl of Φ for l = 1, . . . , 2M − 2.

The above is indeed a necessary condition for uniqueness, be-
cause if violated, then there exists a vertex in H̃ ∩ S that is different
from ±X. For instance, let us choose M = 3, N = 2 and

F ∗ =

⎡⎣1 0
0 1√

2

0 1√
2

⎤⎦ , then PS =

⎡⎣1 0 0
0 1

2
1
2

0 1
2

1
2

⎤⎦ ,

and PSϕ1 = ϕ1 = [1, 0, 0]� as well as PSϕ5 = ϕ5 = [0, 1, 1]�.
Thus, along with ±X, we have two additional vertices that belong to
H̃ ∩ S, invalidating the uniqueness of the reconstruction. Note that
whenever Y (l) ∈ H̃ ∩ S, then the same is true for −Y (l). From this
example, we see that whenever S is aligned with one of the faces of
the hyperrectangle H or contains a subset of vectors from the canon-
ical ONB in R

M then the reconstruction is not unique.
It is also a sufficient condition. Given that Φ covers all the ver-

tices of H and if for all l = 1, . . . , 2M−2, none of the ϕl is preserved
through PS , then PSY (l) 	= Y (l) for all l = 1, . . . , 2M −2. Thus, the
feasible set S∩H̃ contains only ±X, which concludes the argument.

We again observe here the essential role played by PS . In addi-
tion, this test provides a necessary and sufficient condition that can
also be used to drive the design of PS or the frame itself to ensure
uniqueness of reconstruction from the magnitudes of the frame ex-
pansion coefficients.

Let us now consider an algorithm of reconstruction. One of the
possible methods is through quadratic programming, whereby we
do the following: find x̂ that maximizes ‖x̂‖ under the constraints[

F ∗

−F ∗

]
x̂ ≤

[
Y
Y

]
. The feasible set for this program is a polygon

of at most 2N vertices that consists of the intersection of S with the
convex hull of H .

5. CONCLUSIONS

This work is a first step towards creating a unifying framework for
frame domain signal processing. Specifically, we have derived a one-
step procedure to perform linear modifications in the frame domain,
leading to an efficient algorithm that can be used as an alternative
to methods based on iterative projections onto convex sets. We have
also established a necessary and sufficient condition for reconstruc-
tion from the magnitude of real frame coefficients.
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