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ABSTRACT

In this paper, we address the problem of enhancement of a
noisy GARCH process using a particle filter. We compare
our approach experimentally to a previously developed recur-
sive estimation scheme. Simulations indicate that a signif-
icant gain in performance is obtained, at the cost of higher
sensitivity to errors in the GARCH parameters. The proposed
method allows tackling arbitrary driving noise distributions as
well as arbitrary fidelity criteria.

Index Terms— Particle filtering, GARCH, dynamic esti-
mation.

1. INTRODUCTION

Recently, an approach for statistically modeling speech sig-
nals in the STFT domain based on generalized autoregressive
conditional heteroscedasticity (GARCH) processes was pro-
posed [1, 2]. The GARCH model, which was adopted from
the field of financial time series analysis, is characterized by
heavy-tailed distributions and volatility clustering, properties
which are also characteristics of speech STFT coefficients.
In the signal processing community, the GARCH model was
employed for voice activity detection [3, 4], speech recogni-
tion [5] and speech enhancement [6], among other tasks.

In [6] a recursive estimation algorithm was proposed for
recovering a complex GARCH process xt from its noisy ver-
sion yt = xt+wt, where wt is an iid complex Gaussian noise
component independent of xt. This algorithm comprises a
propagation step, in which the estimate of xt based on the
noisy measurements up to time t is processed to yield an es-
timate of xt+1, followed by an update step in which the mea-
surement yt+1 is used to update the estimate of xt+1. It was
shown in [6] that this approach, when applied to the STFT
coefficients of noisy speech signals, leads to better enhance-
ment results than the decision-directed method [7] in terms
of log-spectral distortion (LSD) and perceptual evaluation of
speech quality scores (PESQ, ITU-T P.862).

These findings support the suitability of the GARCH
model to speech signals. Nevertheless, the recursive es-
timator of [6] is suboptimal in the sense that it does not
minimize the desired distortion measure at time t given the

entire history of measurements up to time t. Specifically, in
speech enhancement applications, one is usually interested in
minimizing the mean squared error (MSE) of the spectral am-
plitude or of the log-spectral amplitude (LSA). The method
of [6] relies on several approximations and thus does not
generally coincide with the minimum MSE (MMSE) or the
MMSE-LSA estimators. An important open question, then,
is whether this approach can be improved by using alternative
recursive estimation schemes.

In this work, we address the problem of recovering a com-
plex GARCH process from its noisy version using a particle
filter. This sequential Monte Carlo approach allows to ap-
proximate the optimal estimator (under any chosen fidelity
criterion) as accurately as desired by increasing the number
of particles. Furthermore, the particle filtering methodology
allows to tackle arbitrary distributions. We consequently use
this method to assess the proximity of the algorithm of [6] to
the optimal solution in various situations. Simulations show
that the performance of the proposed algorithm is better for
the range of GARCH parameter values that are typical to
speech, especially in low SNR scenarios.

The paper is organized as follows. Section 2 presents the
GARCH model and its use in speech enhancement. In Sec-
tion 3 we briefly review the recursive estimation algorithm of
[6] and propose an alternative particle filter based approach
to tackle the recovery of a noisy GARCH process. Finally,
in Section 4 we present simulation results, confirming the ad-
vantage of the proposed method.

2. THE GARCH SPEECH MODEL

A common assumption underlying many speech enhance-
ment methods is that distinct frequency bins of the STFT of
a speech signal are independent random processes. Conse-
quently, the processing of the STFT coefficients is carried
out separately for each frequency bin, which allows to omit
the bin subscript from our notation. Let xt denote the STFT
expansion coefficient of a speech signal at time t in some
frequency bin. We model xt as a complex GARCH process
of order (1, 1) defined by

xt = σtvt, (1)



where {vt} are statistically independent complex random
variables with zero mean and unit variance

E[vt] = 0, E
[
|vt|2

]
= 1, (2)

and the conditional variance σ2
t itself is a random process,

which evolves as

σ2
t = σ2

min + µ|xt−1|2 + δ
(
σ2
t−1 − σ2

min

)
. (3)

A GARCH(1, 1) process has a finite unconditional variance
E[|xt|2] if its parameters satisfy

σ2
min > 0, µ ≥ 0, δ ≥ 0, µ+ δ < 1. (4)

The parameters µ and δ control the typical duration of
clusters of small and large magnitudes, whereas the param-
eter σ2

min affects the unconditional variance E[|xt|2] of the
process:

E
[
|xt|2

]
= σ2

min
1− δ

1− µ− δ
. (5)

The STFT expansion coefficients of speech signals are char-
acterized by long periods of small magnitudes separated by
short bursts of large magnitudes, which correspond to speech
presence. Such a behavior can be obtained in the GARCH
model by choosing δ relatively small and µ + δ close to 1.
The characteristic dynamic range of the process xt can be
controlled by tuning pv(v), the distribution of the process vt.
Common models include the Gaussian, Gamma and Laplace
distributions [6].

3. RECURSIVE ESTIMATION FROM NOISY
MEASUREMENTS

Assume that a GARCH(1, 1) process is observed through ad-
ditive noise:

yt = xt + wt, (6)

where wt ∼ CN (0, σ2) are statistically independent complex
circular Gaussian random variables. Our goal is to produce
at time t an estimate x̂t based on the set of measurements
{yτ}tτ=1 such that the expected distortion E[d(xt, x̂t)] is min-
imized. In speech enhancement applications, one is typically
interested in minimizing the MSE of the spectral amplitude

d(x, x̂) = (|x| − |x̂|)2 (7)

or of the LSA

d(x, x̂) = (log |x| − log |x̂|)2. (8)

3.1. Approximate Recursive Recovery

An important property of the GARCH model is that the
random variables {xt} are conditionally independent given
{σ2

t }. Therefore, had σ2
t been known at time t, the optimal

estimate of xt given {yτ}tτ=1 would be only a function of the
current measurement yt. Furthermore, a closed form expres-
sion for this estimate is available under the MSE criterion in
many interesting situations, including the cases where xt|σ2

t

has a Gaussian, Gamma, or Laplacian distribution [6]. An an-
alytic formula for the Gaussian speech model is also available
under the MSE-LSA criterion. Based on this observation, it
was proposed in [6] to recursively estimate σ2

t given the mea-
surements {yτ}tτ=1 in an MMSE sense, and substitute the
estimate σ̂2

t in the formula for the estimator of xt given yt.
The algorithm proposed in [6] is suboptimal for two rea-

sons. First, substituting the MMSE estimate of σ2
t in the for-

mula for the estimator of xt, generally does not lead to the
minimal value of E[d(xt, x̂t)]. Second, the recursive scheme
of [6] for estimating the conditional variance is only an ap-
proximation of the MMSE estimate of σ2

t given the entire past
{yτ}tτ=1. To asses the accuracy of these approximations, we
now propose using a particle filter, which can approximate
the optimal estimate as accurately as desired, by employing a
large number of particles.

3.2. Recovery via the CONDENSATION Algorithm

The CONDENSATION algorithm [8] is one of a class of par-
ticle filtering methods, in which the conditional density of the
state xt given the measurements {yτ}tτ=1 is approximated by
a weighted combination of delta functions:

p
(
xt

∣∣{yτ}tτ=1

)
≈

N∑
i=1

πi
tδ(xt − xi

t). (9)

The “particles” {xi
t}Ni=1 and weights {πi

t}Ni=1 are propagated
in time according to the evolution of the state and measure-
ments, which are assumed to be of the form [9]

xt = f(xt−1, vt) (10)
yt = h(xt, wt) (11)

for arbitrary functions f(·, ·) and g(·, ·). An important as-
sumption underlying particle filtering methods is that the
noise processes vt and wt are iid and mutually independent.

Substituting (3) into (1), it can be seen that the evolution
of a GARCH(1, 1) process xt does not follow the form (10),
rendering direct use of the CONDENSATION algorithm in-
applicable. An alternative, then, is to regard σ2

t as the state
variable to be estimated. However, substituting (1) into (6)
leads to a measurement equation not in the form of (11).

To overcome these difficulties, we define an augmented
state vector

x̃t =
(
xt, σ

2
t

)T
. (12)

This allows writing both the state evolution and the measure-



ment equation in the form of (10) and (11), where

f (x̃t−1, vt) =

(
vt

√
σ2

min + µ|xt−1|2 + δ(σ2
t−1 − σ2

min)

σ2
min + µ|xt−1|2 + δ(σ2

t−1 − σ2
min)

)
,

(13)

h (x̃, wt) = ( 1 0 ) x̃t + wt. (14)

We therefore propose maintaining a set of 2D particles
{x̃i

t}Ni=1 = {(xi
t, (σ

2
t )

i)T }Ni=1.
The CONDENSATION algorithm comprises three stages

applied successively each time a new measurement becomes
available. At time t, a new set of particles is generated by re-
sampling from {x̃i

t−1}Ni=1 based on the weights {πi
t−1}Ni=1.

Then, each of the new particles is propagated using (13),
with a random variable vit drawn from pv(v), to obtain
the set {x̃i

t}Ni=1. Finally, the weights are updated using
πi
t = pyt|x̃t

(yt|x̃t = x̃i
t), which in our case reduces to

πi
t = pw(yt − xi

t), and normalized such that
∑N

i=1 π
i
t = 1.

Once the particles and weights have been updated, the
MMSE estimate, E[xt|{yτ}tτ=1], can be approximated by

x̂MSE
t =

1

N

N∑
i=1

πi
tx

i
t. (15)

Similarly, the MMSE-LSA estimate, which is given by
exp{E[log(|xt|)|{yτ}tτ=1]}ej

̸ yt [6], can be computed as

x̂LSA
t = exp

{
1

N

N∑
i=1

πi
t log(|xi

t|)

}
ej

̸ yt . (16)

4. SIMULATIONS

We now compare the performance of the recursive estimator
of [6] with that of the CONDENSATION algorithm outlined
above, in simulations.

We begin by examining the performance of both algo-
rithms in the task of MSE minimization. Figures 1 and 2
depict the difference between the output SNR of the recursive
method of [6] and the particle filter proposed above for input
SNRs of 10dB and 1dB respectively and for a range of val-
ues of the parameters δ and µ. Specifically, in this experiment
we generated Gaussian-noise-driven GARCH(1, 1) processes
with various values of the parameter δ in the range [0.05, 0.95]
and contaminated them with white Gaussian noise with vari-
ance σ2 = 1. For each value of δ, the parameter µ was tuned
such that δ + µ = 0.999 to obtain a behavior which is typical
of speech STFT coefficients, and σ2

min was calculated using
(5) to yield the desired input SNR. The results were averaged
over a set of 10 realizations per set of parameters.

As seen in the figures, the CONDENSATION algorithm
attains a significantly higher SNR than the recursive approach
of [6] for small values of δ. As explained in Section 2, this
range of values of δ is of particular interest when modeling
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Fig. 1. Particle filtering versus [6]. SNR = 10dB.
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Fig. 2. Particle filtering versus [6]. SNR = 1dB.

speech. A comparison between Figures 1 and 2 reveals that
the gain in performance is greater when the input SNR is low
(Fig. 2). This indicates that the particle filter approach should
perform better when applied to real speech signals, especially
in the high frequency bins, where the SNR is usually low.

Figures 3 and 4 compare the performance of both algo-
rithms in the task of MSE-LSA minimization. They depict
the ratio between the MSE-LSA of the particle filter proposed
above and that of the recursive method of [6] for input SNRs
of 10dB and 1dB respectively. As can be seen, the CON-
DENSATION algorithm attains a significantly lower MSE-
LSA than the recursive approach of [6] for small values of
δ. Similar to the MSE experiment, here too the gain is more
significant for low input SNRs.

The computational load of the CONDENSATION method
is greater than that of [6] roughly by a factor of the number of
particles N . Nevertheless, as N increases, the gain in perfor-
mance is more significant. Examining the MSE-LSA experi-
ment, which is of particular interest in speech enhancement, it
can be seen that even a moderate amount of 10 particles leads
to a large reduction in the MSE-LSA.

Finally, we compare both algorithms in a model mismatch
scenario. Specifically, in practical applications the GARCH
parameters (µ, δ, σ2

min) are usually not known in advance but
rather need to be estimated from the noisy process yt itself.
We now address the question: to what extent is the perfor-
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Fig. 3. Particle filtering versus [6]. SNR = 10dB.
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Fig. 4. Particle filtering versus [6]. SNR = 1dB.

mance of the algorithms affected by using an incorrect set
of parameters. From our experiments, both algorithms are
barely sensitive to a mismatch in µ and δ. However, using an
incorrect value for σ2

min, severely effects the results. Figure 5
shows the MSE-LSA attained by both algorithms when using
different values of σ2

min in the range [0.01σ2
0 , 100σ

2
0 ], where

σ2
0 is the true value of σ2

min. In this experiment the input SNR
was 10dB and both algorithms were provided with the true
values of (δ, µ) = (0.2, 0.799). As can be seen, the particle
filter attains its minimal LSA at the true value of σ2

min. In
contrast, the recursive estimator [6] benefits from an under-
estimate of σ2

min and attains its minimum roughly at 0.1σ2
0 .

The LSA in this point is only 14% higher than the minimal
LSA of the particle filter. Furthermore, we observe that the
CONDENSATION approach is more sensitive to a mismatch
in σ2

min. Specifically, its LSA is lower than that of [6] in the
range [0.3σ2

0 , 30σ
2
0 ] and higher otherwise.

5. CONCLUSIONS

We have proposed a particle-filtering approach for recovering
a complex GARCH(1, 1) process contaminated by noise. The
method can be used for GARCH signals with arbitrary driving
noise distributions, as well as under arbitrary fidelity criteria.
We showed through simulations that this algorithm is supe-
rior to the method developed in [6], most notably for values
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Fig. 5. Performance under mismatch in σ2
min. SNR = 10dB.

of the parameters that are typical to speech signals, under the
MSE-LSA criterion, and in low input SNR scenarios. The dis-
advantage of the approach is that it is more sensitive to errors
in the parameters. Future work will be concerned with fusing
both methods to enhance speech signals. In time-frequency
bins where the estimated parameters are expected to be in-
accurate, the algorithm of [6] should be applied, whereas our
method would be used in the rest of the time-frequency plane.
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