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Abstract— A new algorithm, termed subspace evolution and approach for solving this problem, termed OptSpace, was
transfer (SET), is proposed for solving the consistent maix  described in [4].
completion problem. For this problem, one is given a subsetfo The problem considered in this paper and its algorithmic

the entries of a low-rank matrix, and asked to findone low-rank solution differ from all brevious approaches. The problem
matrix consistent with the given observations. We show thathis p PP : P

problem can be solved by searching for a column space that & hand is to identifyone low-rank matrix consistentwith
matches the observations. The corresponding algorithm caiists the observations. The solution may or may not be unique.

of two parts - subspace evolution and subspace transfer. In In contrast, most results in matrix completion deal with
the evolution part, we use a line search procedure to refine yne gomewhat more restrictive requirement that sampling is

the column space. However, line search can not guarantee erformed in such a wav that the reconstructioruisaue
convergence as there may exist barriers along the search pat P y q

that prevent the algorithm from reaching a global optimum. To Hen<.:e,. our approach can be applied to scenari0§ where the
address this problem, in the transfer part, we design mechasms matrix is highly under-sampled, and where potentially many

to detect barriers and transfer the estimated column spacerdbm  consistent solutions exist. The relaxation on the unigsgne
one side of thf.e.barrlers to the other. The SET algorithm exhilits  51ows for the empirically observed performance improvatne
excellent empirical performance. . .
over other completion techniques.
To solve the consistent matrix completion problem, we
|. INTRODUCTION propose an algorithm, termed subspace evolution and @ansf

Suppose that we observe a subset of entries of a matrix. TRET). We show thaj[ the matrix completion problem can
matrix completion problem asks when and how the matrix cdff solved by searchlrjg for a column (or FOV_V) space that
be uniquelyrecovered based on the observed entries. This fpatches the ob.serva_tlons. As a result, optimization on the
construction task is ill-posed and computationally intadde. Grasgmann mamfold, i.e., subspace evolution, pl-ays“thH!a_je Y
However, if the data matrix is known to have low-rank, exadple in the algorithm. However, there may exist b"%”'ers
recovery can be accomplished in efficient manners, provid@lﬁ)ng the search path that prevent subspace evolution from

that sufficiently many entries are revealed. Low-rank matrﬁ:)nve[)gmg to a gl?cbal optlmur(r;. TO addrehs N t.h's proZIetr": » 1N
completion problem has received considerable interestgau € SU space trans er part., We design mechanisms to deibct a
its wide applications, see for example [5] for more details. cross barriers. Empirical simulations demonstrate thelétt

An efficient way to solve the completion problem is Viaperform_ance of the_ proposed algorithm. . .
convex relaxation. Instead of looking at rank-restricted- m Despite resembling the OptSpace algorithm [4] in terms of

trices, one can search for the matrix with minimum nucleéﬂsing optimization over Grassmann manifolds, our approach
' Hbstantially differs from this technique. Searching owely

norm, subject to the data consistency constraint. Althoug | t  th ‘
in general nuclear norm minimization is not equivalent t ne space (column or row space) represents one of the mos

rank minimization, the former will give us the same squtioﬁ'g|nlflcant differences between SET and OptSpace. Theee, on

as the latter if the data matrix satisfies certain incoheﬁfen.%eedS to searchoth the column and the row spaces, which

conditions [6]. More importantly, nuclear norm minimizz introduces numerical and analytical difficulties. Moregve

can be accomplished by polynomial complexity algorithmg‘,'her? opyn;:zmg overth(ra]columnr?pace, zne h?S to take care of
for example, semi-definite programming or singular valué)arrlers that preventt € search procedure irom converg!
thresholding (SVT) [1]. to a global optimum, an issue that was not addressed before.

T

There are other low-complexity alternatives. Based on the Il. CONSISTENTMATRIX COMPLETION
subspace pursuit (SP) and CoSaMP algorithms for compres: mxn -
sive sensing [7], [8], the authors of [2] developed the stedal Let X € R be an unknown matrix with rank <

ADMIRA algorithm. A modification of the power factorization min (m, n), and Ieth C [m] x [n] be the set of |nQ|ces of
: . o the observed entries, whef&] = {1,2,--- , K'}. Define the
algorithm was used for matrix completion in [3]. Another ~.~""°
projection operator
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Theconsistent matrix completiqeroblem is to fincdbnerank+ B. The SET algorithm: a high level description

matrix X'’ that is consistent with the observatioXs,, i.e., Our algorithm aims to minimize the objective function
) , f(U), provided that the minimum value gf (U) is known
(P0) : find X" such that to be zero Ideally, a solution can be obtained by using a

rank(X’) < r andPq (X') = Pq (X) = Xq. (1) line search procedure on the Grassmann manifold. Here, line
search refers to as iterative refinements of the interval in
This problem is well defined aX is generated from the which the function attains its minimum. Hence, the “subspac
matrix X with rank » and therefore there must ext least evolution” part of the algorithm reduces to a well studied
one solution In this paper, like in other heuristic approachesptimization method.
described in [2]-[4], we assume that the rankis given. The main difficulty that arises during line search, and makes
This will not introduce serious problems in practicexrifis the SET algorithm highly non-trivial, is when during the
unknown, we can try different values of and choose the search, one encounters “barriers”. Careful inspectioraksv
appropriate one. that the objective functioyf can be decomposed into a sum of
atomic functions, each of which involves only one column of
X (see Sectiof II-D for details). Along the steepest descent

I1l. THE SET ALGORITHM path, these atomic functions may not agree with each other:
o some decrease and some increase. Rapid increases of some
A. Why optimize over column spaces only? atomic functions may result in “bumps” in thiecurve, which

In this section, we show that the consistent matrix c:omplQlock the linear search procedure from global optima and

tion problem is equivalent to finding a column (or row) spac%][e hthe"refori r?ferred ]thatsarlrlerg.hTh(_e ma',rc'j co_er%ne:gt
consistent with the observed entries. of the "transfer” part of the algorithm is to identy, r

LetZ{,. . be the set ofn x r matrices withr orthonormal performing line search, whether there exist barriers along
" X T . the steepest descent path between the current column space
columns, i.e.ly, , = {U € R : UTU =1} . Define a . o ) ok
. ' estimate and the global optimizer. Detecting barriers is in
function o )
general a very difficult task, since one does not know the
locations of global minima. Nevertheless, we observe that
) barriers can be detected by the existence of atomic furstion
U~ min || Xo—Po(UW")|,, (2) withinconsistent descent directions. When such a scesrio
WeR encountered, the algorithm “transfers” the starting pofrine

search to the other side of the barriers, and proceeds from
there. Such a transfer does not overshoot global minima as
we enforce consistency of the steep descent directionseat th
points before and after the transfer.

In summary, we start with a randomly generatéd= U, ,
r,;:md then refine it untilf (U) = 0. In each iteration, we first
detect and cross barriers if there are any, and then perfoan |
search. The details of subspace evolution and transfeiare g
in Sectior1I[-C and1I-D. Simulation results are presehie
Section V.

f:Unr—R

where |-||, denotes the Frobenius norm, i.glA|% =
> A7, for an A € R™*™. The functionf captures the
consistency betweely and the observationXg: let the
minimum in the definition off (U) be achieved byy;; if
f(U) = 0, then the matrixUW{; has rankr and satisfies
PBa (UWE) = Xgq. Hence, the consistent matrix completio
problem is equivalent to

(P1) :find U € Uy, such thatf (U) = 0. 3

An important property off is that f (U) = f(UV) for
anyr-by-r orthogonal matrixy’ asUW?T = (UV) (WV)". C. Subspace evolution
Hence, the functiorf depends only on the subspace spannedDue to space limitation, we focus on the= 1 case in
by the columns olU, i.e., the spaU). Note that spa(lU/) Sections II=C and_IIl-D. Furthermore, our exposition aims
is the column space of the matri&@ W7 for any W € to make the algorithmic details as transparent to the reader
R™>7 with full column rank. The consistent matrix completioras possible. The highly techniga¢rformance and complexity
problem is essentiallfinding a column space that is consistenanalysisof SET for bothr = 1 andr > 1 is deferred to the
with the observed entries journal version of the paper.

We find the following definitions useful for the exposition For the optimization problem at hand, we shall refine the
to follow. The set of all--dimensional linear subspaces®® current column space estimatealong some geodesic curve
is called the Grassmann manifold, and is denotedghy,. on the Grassmann manifold,, ;. Here, the lowercase letter
Given a subspac¥ € G,, ., one can always find & € U,,,», wu is used to emphasize that tlié matrix is a vector when
such thatU = spanU). The matrixU is referred to asa r = 1. A geodesic curve on the Grassmann manifold is an
generator matrix ot/, and we sayU generated/. Although analogy of a straight line in the Euclidean space: given two
a given subspac& < G,, , has multiple generator matrices points on the manifold, the geodesic curve connecting theem i
a given matrixU < U,,, uniquely defines a subspace. Fothe path of the shortest length on the manifold. To define the
this reason, we henceforth ugé to represent its generatedgeodesic curve, we first compute the gradienf @fs follows.
subspace. Suppose thatw,, is a lengthn column vector that achieves



f (u). Define D. Subspace transfer

X, = Xq —PBa (uw),) , 4) In the matrix completion problem, the objective function
f (u) may not be a convex function af. The linear search
procedure in AlgorithmJ1 may not converge to a global
minimum. The reason behind this problem is that the search
Vof = —2X,w,. (5) path may be blocked by what we call “barriers”. We show
i i next how to overcome the problem introduced by barriers.
No_te that the .gradllent describes the tangent vector anngAt this point, we formally introduce the decoupling princi-
which the fgncﬂonf increases the_fastest. The tangent vect%e_ Letzo, € R™*! be thej*» column of the matrixXo.
h = —V_uf is the vector along whiclf decreas_es the fastestDeﬁne vectorsuo € R™*! andhg, € R™¥! such that
According to [9, Theorem 2.3], the geodesic curve on the ’ ’

referred to as the residue matrix. Then the graﬁierﬁtf at
u IS given by

Grassmann manifold starting from along the tangent vector (qu)_ = u;, (th)_ =h,, if (i,7) € Q;
h, is given by (uq,), =0, (ha,), =0, if (i,5) ¢ Q.
u(t) = ucost + hsint, te0,m). (6)

Furthermore, let
We restrictt to the intervall0, ) because

Flu(t+m) = f(~u() = f (u®), o | |
i.e., f(u(t)) has periodr. Interested readers are referred tghen the pbjecnv_e functioff (w (£)) can be written as a sum
J.n atomic functions:

[9] for more details on geodesics on the Grassmann manifolt

uq, (t) = uq, cost + hq, sint.

The subspace evolution part is designed to search for a f(u(t) = min HXQ ~ P (uwT)H2
minimizer of the functionf along the geodesic curve. It weRnx1 F
includes two steps. The goal of the first step is to find a n 9
0 < tmax < 7 such thatf (u (¢)) must have a minimizer (in - Z [z, =P (za,,ue, ()| @)
most cases, a local minimizer) in the intergal ¢,,.,). The =1 15 (u(t))

second step is devoted to locating the minimiZe€ (0, t;ax)

accurately by iteratively applying the golden section fag]. Where (zq,, uq, (t)) is the projection of the vectatg; on
These two steps are described in Algorithm 1. The constaﬁ@an(UQj (t)).

are set toe = 1079, ¢, = (\/3 — 1) /2, ¢ = c1/(1—=¢y) The following example illustrates the concept of a barrier.
anditN = 10. Ideally, the numbee > 0 should be chosenLet » = 1, Q = [3] x [2] — {(1,1),(2,2)}, and Xq =
adaptively. We set it to a fixed constant as it is aIread@[O,2,2]T,[2,0, 11"|. It is clear that the global minimizer

sufficiently small in all our experiments. is given by ux — %[271’1]T’ ie., f(ux) = 0. Let

- - u € Uy, be a generator matrix of the current estimate of
Algorithm 1 Subspace evolution. ’ th

~ the column space, and; be the:'" entry of u. Suppose
Input: X{}’ 2, u, afd”N‘ thatu = \/L_ [—10,1,1]". Fig.[Ta gives the contour of;,
Output.: t andu (7). projected 01r102the plane spanned#y andus. Along the line
SteplA find timax. . search directiork, the atomic functionf; increases very fast.
Let ' = er, wheree > 0 is a constant. Careful tracking of several line search procedures (Eig. 1b
1) Lett" =cy-t'. shows that the estimate will approach[—1,0,0]", but will
2) If " > m, thentma = 7 and quit Step A. never cross the contoyr, = 8. That is, the contouyf; = 8

3) If f(u(t") > f(u(?t)), thentma =t" and quit Step forms a “barrier” for the line search procedure.
A

4) Otherwiset’ = ¢"’. Go back to step 1).
Step B numerically search fot*.
Let t1 = tmax/cgn to = tmax/c% t4 = tmax, andti& =t +
c1 (t4 — t1). Let itn = 1. Perform the following iterations.
1) If f(u (tl)) > f(u (tz)) > f(u (tg)), then t1 = to,
ty =t3, andts =t1 + ¢ (t4 — tl).
2) Else,ty = t3, t3 = to andty, = t1 + (1 - Cl) (t4 - tl).
3) itn = itn + 1.
4) If itn > itN, then quit the iterations. Otherwise, go (a) Contours off; . (b) Search paths with zooming in.
back to step 1).
Let¢t* = argmin f (w(¢)) and computeu (t*).
te{ty, - ,ta}

Fig. 1: An illustrative example for barriers.

To define barriers formally, we need to study the atomic
functions f; (u (t))'s. If

Un fact, the gradient is not defined at finitely many points i,
However, the probability of hitting those points during redmais zero. rank( [qu s th]) =1,



then f; (u (¢)) is a constant almost everywhere. Suppose that IV. PERFORMANCE EVALUATION

Here, we introduce an error tolerance parametes 0. In
practice, instead of requiring exact data matching, it lgua
suffices to have|PBq (X') — XQHi < € HXQH§7 for some
small .. In our simulations, we set, = 1076,

We tested the SET algorithm by randomly generating low-

b = argmawaQ. —p (a:Q, ug. (t))HQ @) rank matricesX and index set$2. Specifically, we decom-
T Eom I A o pose the matrixX into X = UxSxV{L, whereUx €
Unr, Vx € Uy, and Sx € R™". We generatelU x
and Vx from the isotropic distribution on the séf,, .
. 2 i i i
tmin,j = argmin||zq, — Po, (za,,uq, )|, (©) and U, respectively. The entries of th&x matrix are
te[0,m) independently drawn from the standard Gaussian distabuti
. . . N (0,1). This step is important in order to guarantee the
respectively. These two quantities can be easily computed..andomness in the singular values Xf. The index sef? is

h - ; R
We say that the:*" column of X, forms a barrier for the randomly generated from the uniform distribution over the s

rank( [’LLQ]. R th ]) = 2.

It can be verified thatf; (u (¢)) has unique minimizer and
maximizer, given by

4 column if the following conditions are satisfied: { Cm]x[n]: | =}
1) rank([ug,,ho,]) = rank([ug,,hq;]) = 2, alterna-  The performance of the SET algorithm is surprisingly good.
tively, neither f;, nor f; is a constant function; For the results presented in Tallk I, we tested different
2) tmaxk < tmin; < tmax,;, Which means that the matrices with different ranks. For each size and each rank,
maximizer of f;, appears before the minimizer ¢f; we tried different sampling rates, defined &Y / (m x n).

3) Lf(u(t)) |tmtmar <0, i.e., the vectors of the steepesiThe SET algorithm succeeds for all the realizations that
descent off att = 0 andtmax,, are consistent (form a we generated. We also compare the SET algorithm to other
sharp angle). matrix completion algorithms. As shown in Figlife 2, the SET

algorithm outperforms all known completion approa&]es

simulations, the number of iterations of the SET algorithm

did not exceed 500, while that of other completion algorghm

were set to 2000. All tested algorithms had run-time of the

Note that for a given colump of X, there may exist multiple
barriers for it.

When barriers are detected, we transfeacross them. In
our implementation, we focus on the closest barrieraito

Define same order.
e # of Real- Recover
J = {j: the j** column of X, admits barrier, Matrix Size | Ranks | Sample Rates | 7 pong Rate
9x9 1,2 1/27,2/27, -, 1 500 100%
» . 50 x50 | 1,2,3,4 | 0.04,0.08, -1 200 100%
Jj* =argmint, j, (20)
jeg TABLE I: The performance of the SET algorithm.

K;={k: the k" column of X, forms a barrier
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