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Abstract— A new algorithm, termed subspace evolution and
transfer (SET), is proposed for solving the consistent matrix
completion problem. For this problem, one is given a subset of
the entries of a low-rank matrix, and asked to findone low-rank
matrix consistent with the given observations. We show thatthis
problem can be solved by searching for a column space that
matches the observations. The corresponding algorithm consists
of two parts - subspace evolution and subspace transfer. In
the evolution part, we use a line search procedure to refine
the column space. However, line search can not guarantee
convergence as there may exist barriers along the search path
that prevent the algorithm from reaching a global optimum. To
address this problem, in the transfer part, we design mechanisms
to detect barriers and transfer the estimated column space from
one side of the barriers to the other. The SET algorithm exhibits
excellent empirical performance.

I. I NTRODUCTION

Suppose that we observe a subset of entries of a matrix. The
matrix completion problem asks when and how the matrix can
be uniquelyrecovered based on the observed entries. This re-
construction task is ill-posed and computationally intractable.
However, if the data matrix is known to have low-rank, exact
recovery can be accomplished in efficient manners, provided
that sufficiently many entries are revealed. Low-rank matrix
completion problem has received considerable interests due to
its wide applications, see for example [5] for more details.

An efficient way to solve the completion problem is via
convex relaxation. Instead of looking at rank-restricted ma-
trices, one can search for the matrix with minimum nuclear
norm, subject to the data consistency constraint. Although
in general nuclear norm minimization is not equivalent to
rank minimization, the former will give us the same solution
as the latter if the data matrix satisfies certain incoherence
conditions [6]. More importantly, nuclear norm minimization
can be accomplished by polynomial complexity algorithms,
for example, semi-definite programming or singular value
thresholding (SVT) [1].

There are other low-complexity alternatives. Based on the
subspace pursuit (SP) and CoSaMP algorithms for compres-
sive sensing [7], [8], the authors of [2] developed the so called
ADMiRA algorithm. A modification of the power factorization
algorithm was used for matrix completion in [3]. Another
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approach for solving this problem, termed OptSpace, was
described in [4].

The problem considered in this paper and its algorithmic
solution differ from all previous approaches. The problem
at hand is to identifyone low-rank matrix consistentwith
the observations. The solution may or may not be unique.
In contrast, most results in matrix completion deal with
the somewhat more restrictive requirement that sampling is
performed in such a way that the reconstruction isunique.
Hence, our approach can be applied to scenarios where the
matrix is highly under-sampled, and where potentially many
consistent solutions exist. The relaxation on the uniqueness
allows for the empirically observed performance improvement
over other completion techniques.

To solve the consistent matrix completion problem, we
propose an algorithm, termed subspace evolution and transfer
(SET). We show that the matrix completion problem can
be solved by searching for a column (or row) space that
matches the observations. As a result, optimization on the
Grassmann manifold, i.e., subspace evolution, plays the central
role in the algorithm. However, there may exist “barriers”
along the search path that prevent subspace evolution from
converging to a global optimum. To address this problem, in
the subspace transfer part, we design mechanisms to detect and
cross barriers. Empirical simulations demonstrate the excellent
performance of the proposed algorithm.

Despite resembling the OptSpace algorithm [4] in terms of
using optimization over Grassmann manifolds, our approach
substantially differs from this technique. Searching overonly
one space (column or row space) represents one of the most
significant differences between SET and OptSpace. There, one
needs to searchboth the column and the row spaces, which
introduces numerical and analytical difficulties. Moreover,
when optimizing over the column space, one has to take care of
“barriers” that prevent the search procedure from converging
to a global optimum, an issue that was not addressed before.

II. CONSISTENTMATRIX COMPLETION

Let X ∈ R
m×n be an unknown matrix with rankr ≪

min (m,n), and letΩ ⊂ [m] × [n] be the set of indices of
the observed entries, where[K] = {1, 2, · · · ,K}. Define the
projection operator

PΩ : R
m×n → R

m×n

X 7→ XΩ, where (XΩ)i,j =

{

Xi,j if (i, j) ∈ Ω

0 if (i, j) /∈ Ω
.
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Theconsistent matrix completionproblem is to findonerank-r
matrix X ′ that is consistent with the observationsXΩ, i.e.,

(P0) : find X
′ such that

rank(X ′) ≤ r andPΩ (X ′) = PΩ (X) = XΩ. (1)

This problem is well defined asXΩ is generated from the
matrix X with rank r and therefore there must existat least
one solution. In this paper, like in other heuristic approaches
described in [2]–[4], we assume that the rankr is given.
This will not introduce serious problems in practice: ifr is
unknown, we can try different values ofr and choose the
appropriate one.

III. T HE SET ALGORITHM

A. Why optimize over column spaces only?

In this section, we show that the consistent matrix comple-
tion problem is equivalent to finding a column (or row) space
consistent with the observed entries.

Let Um,r be the set ofm× r matrices withr orthonormal
columns, i.e.,Um,r =

{
U ∈ R

m×r : UTU = Ir

}
. Define a

function

f : Um,r → R

U 7→ min
W∈Rn×r

∥
∥XΩ −PΩ

(
UW

T
)∥
∥
2

F
, (2)

where ‖·‖F denotes the Frobenius norm, i.e.,‖A‖2F =
∑

i,j A
2
i,j for an A ∈ R

m×n. The functionf captures the
consistency betweenU and the observationsXΩ: let the
minimum in the definition off (U) be achieved byWU ; if
f (U) = 0, then the matrixUW T

U
has rankr and satisfies

PΩ

(
UW T

U

)
= XΩ. Hence, the consistent matrix completion

problem is equivalent to

(P1) : find U ∈ Um,r such thatf (U) = 0. (3)

An important property off is that f (U) = f (UV ) for
anyr-by-r orthogonal matrixV asUW T = (UV ) (WV )

T .
Hence, the functionf depends only on the subspace spanned
by the columns ofU , i.e., the span(U). Note that span(U)
is the column space of the matrixUW T for any W ∈
R

n×r with full column rank. The consistent matrix completion
problem is essentiallyfinding a column space that is consistent
with the observed entries.

We find the following definitions useful for the exposition
to follow. The set of allr-dimensional linear subspaces inRn

is called the Grassmann manifold, and is denoted byGm,r.
Given a subspaceU ∈ Gm,r, one can always find aU ∈ Um,r

such thatU = span(U). The matrixU is referred to asa
generator matrix ofU , and we sayU generatesU . Although
a given subspaceU ∈ Gm,r has multiple generator matrices,
a given matrixU ∈ Um,r uniquely defines a subspace. For
this reason, we henceforth useU to represent its generated
subspace.

B. The SET algorithm: a high level description

Our algorithm aims to minimize the objective function
f (U), provided that the minimum value off (U) is known
to be zero. Ideally, a solution can be obtained by using a
line search procedure on the Grassmann manifold. Here, line
search refers to as iterative refinements of the interval in
which the function attains its minimum. Hence, the “subspace
evolution” part of the algorithm reduces to a well studied
optimization method.

The main difficulty that arises during line search, and makes
the SET algorithm highly non-trivial, is when during the
search, one encounters “barriers”. Careful inspection reveals
that the objective functionf can be decomposed into a sum of
atomic functions, each of which involves only one column of
XΩ (see Section III-D for details). Along the steepest descent
path, these atomic functions may not agree with each other:
some decrease and some increase. Rapid increases of some
atomic functions may result in “bumps” in thef curve, which
block the linear search procedure from global optima and
are therefore referred to asbarriers. The main component
of the "transfer" part of the algorithm is to identify, before
performing line search, whether there exist barriers along
the steepest descent path between the current column space
estimate and the global optimizer. Detecting barriers is in
general a very difficult task, since one does not know the
locations of global minima. Nevertheless, we observe that
barriers can be detected by the existence of atomic functions
with inconsistent descent directions. When such a scenariois
encountered, the algorithm “transfers” the starting pointof line
search to the other side of the barriers, and proceeds from
there. Such a transfer does not overshoot global minima as
we enforce consistency of the steep descent directions at the
points before and after the transfer.

In summary, we start with a randomly generatedU ∈ Um,r

and then refine it untilf (U) = 0. In each iteration, we first
detect and cross barriers if there are any, and then perform line
search. The details of subspace evolution and transfer are given
in Section III-C and III-D. Simulation results are presented in
Section IV.

C. Subspace evolution

Due to space limitation, we focus on ther = 1 case in
Sections III-C and III-D. Furthermore, our exposition aims
to make the algorithmic details as transparent to the readers
as possible. The highly technicalperformance and complexity
analysisof SET for bothr = 1 and r > 1 is deferred to the
journal version of the paper.

For the optimization problem at hand, we shall refine the
current column space estimateu along some geodesic curve
on the Grassmann manifoldGm,1. Here, the lowercase letter
u is used to emphasize that theU matrix is a vector when
r = 1. A geodesic curve on the Grassmann manifold is an
analogy of a straight line in the Euclidean space: given two
points on the manifold, the geodesic curve connecting them is
the path of the shortest length on the manifold. To define the
geodesic curve, we first compute the gradient off as follows.
Suppose thatwu is a length-n column vector that achieves



3

f (u). Define

Xr = XΩ −PΩ

(
uw

T
u

)
, (4)

referred to as the residue matrix. Then the gradient1 of f at
u is given by

∇uf = −2Xrwu. (5)

Note that the gradient describes the tangent vector along
which the functionf increases the fastest. The tangent vector
h = −∇uf is the vector along whichf decreases the fastest.
According to [9, Theorem 2.3], the geodesic curve on the
Grassmann manifold starting fromu, along the tangent vector
h, is given by

u (t) = u cos t+ h sin t, t ∈ [0, π) . (6)

We restrictt to the interval[0, π) because

f (u (t+ π)) = f (−u (t)) = f (u (t)) ,

i.e., f (u (t)) has periodπ. Interested readers are referred to
[9] for more details on geodesics on the Grassmann manifold.

The subspace evolution part is designed to search for a
minimizer of the functionf along the geodesic curve. It
includes two steps. The goal of the first step is to find a
0 < tmax ≤ π such thatf (u (t)) must have a minimizer (in
most cases, a local minimizer) in the interval(0, tmax). The
second step is devoted to locating the minimizert∗ ∈ (0, tmax)
accurately by iteratively applying the golden section rule[10].
These two steps are described in Algorithm 1. The constants
are set toǫ = 10−9, c1 =

(√
5− 1

)
/2, c2 = c1/ (1− c1)

and itN = 10. Ideally, the numberǫ > 0 should be chosen
adaptively. We set it to a fixed constant as it is already
sufficiently small in all our experiments.

Algorithm 1 Subspace evolution.
Input : XΩ, Ω, u, anditN .
Output : t∗ andu (t∗).
Step A: find tmax.
Let t′ = ǫπ, whereǫ > 0 is a constant.

1) Let t′′ = c2 · t′.
2) If t′′ > π, thentmax = π and quit Step A.
3) If f (u (t′′)) > f (u (t)), then tmax = t′′ and quit Step

A.
4) Otherwise,t′ = t′′. Go back to step 1).

Step B: numerically search fort∗.
Let t1 = tmax/c

2
2, t2 = tmax/c2, t4 = tmax, and t3 = t1 +

c1 (t4 − t1). Let itn = 1. Perform the following iterations.

1) If f (u (t1)) > f (u (t2)) > f (u (t3)), then t1 = t2,
t2 = t3, andt3 = t1 + c1 (t4 − t1).

2) Else,t4 = t3, t3 = t2 and t2 = t1 + (1− c1) (t4 − t1).
3) itn = itn+ 1.
4) If itn > itN , then quit the iterations. Otherwise, go

back to step 1).

Let t∗ = argmin
t∈{t1,··· ,t4}

f (u (t)) and computeu (t∗).

1In fact, the gradient is not defined at finitely many points inUm,r .
However, the probability of hitting those points during search is zero.

D. Subspace transfer

In the matrix completion problem, the objective function
f (u) may not be a convex function ofu. The linear search
procedure in Algorithm 1 may not converge to a global
minimum. The reason behind this problem is that the search
path may be blocked by what we call “barriers”. We show
next how to overcome the problem introduced by barriers.

At this point, we formally introduce the decoupling princi-
ple. LetxΩj

∈ R
m×1 be thejth column of the matrixXΩ.

Define vectorsuΩj
∈ R

m×1 andhΩj
∈ R

m×1 such that
(
uΩj

)

i
= ui,

(
hΩj

)

i
= hi, if (i, j) ∈ Ω;

(
uΩj

)

i
= 0,

(
hΩj

)

i
= 0, if (i, j) /∈ Ω.

Furthermore, let

uΩj
(t) = uΩj

cos t+ hΩj
sin t.

Then the objective functionf (u (t)) can be written as a sum
of n atomic functions:

f (u (t)) = min
w∈Rn×1

∥
∥XΩ −PΩ

(
uw

T
)∥
∥
2

F

=

n∑

j=1

∥
∥xΩj

−P
(
xΩj

,uΩj
(t)

)∥
∥
2

F
︸ ︷︷ ︸

fj(u(t))

, (7)

whereP
(
xΩj

,uΩj
(t)

)
is the projection of the vectorxΩj

on
span

(
uΩj

(t)
)
.

The following example illustrates the concept of a barrier.
Let r = 1, Ω = [3] × [2] − {(1, 1) , (2, 2)}, and XΩ =[

[0, 2, 2]T , [2, 0, 1]T
]

. It is clear that the global minimizer

is given by uX = 1√
6
[2, 1, 1]

T , i.e., f (uX) = 0. Let
u ∈ Um,1 be a generator matrix of the current estimate of
the column space, andui be the ith entry of u. Suppose
that u = 1√

102
[−10, 1, 1]

T . Fig. 1a gives the contour off1,
projected on the plane spanned byu2 andu3. Along the line
search directionh, the atomic functionf1 increases very fast.
Careful tracking of several line search procedures (Fig. 1b)
shows that the estimateu will approach[−1, 0, 0]T , but will
never cross the contourf1 = 8. That is, the contourf1 = 8
forms a “barrier” for the line search procedure.

(a) Contours off1. (b) Search paths with zooming in.

Fig. 1: An illustrative example for barriers.

To define barriers formally, we need to study the atomic
functionsfj (u (t))’s. If

rank
([
uΩj

,hΩj

])
= 1,
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thenfj (u (t)) is a constant almost everywhere. Suppose that

rank
([
uΩj

,hΩj

])
= 2.

It can be verified thatfj (u (t)) has unique minimizer and
maximizer, given by

tmax,j = argmax
t∈[0,π)

∥
∥xΩj

−P
(
xΩj

,uΩj
(t)

)∥
∥
2

F
, (8)

tmin,j = argmin
t∈[0,π)

∥
∥xΩj

−PΩj

(
xΩj

,uΩj
(t)

)∥
∥
2

F
, (9)

respectively. These two quantities can be easily computed.
We say that thekth column ofXΩ forms a barrier for the

jth column if the following conditions are satisfied:

1) rank([uΩk
,hΩk

]) = rank
([
uΩj

,hΩj

])
= 2, alterna-

tively, neitherfk nor fj is a constant function;
2) tmax,k < tmin,j < tmax,j, which means that the

maximizer offk appears before the minimizer offj;
3) d

dt
f (u (t)) |t=tmax,k

< 0, i.e., the vectors of the steepest
descent off at t = 0 and tmax,k are consistent (form a
sharp angle).

Note that for a given columnj of XΩ, there may exist multiple
barriers for it.

When barriers are detected, we transferu across them. In
our implementation, we focus on the closest barriers tou.
Define

J =
{
j : the jth column ofXΩ admits barriers

}
,

j∗ = argmin
j∈J

tp,j , (10)

Kj =
{
k : the kth column ofXΩ forms a barrier

for the jth column ofXΩ

}
,

and

k∗ = argmax
k∈Kj∗

to,k. (11)

The subspace transfer part is described in Algorithm 2.

Algorithm 2 Subspace transfer
Input : XΩ, Ω, andu.
Output : tst andu (tst).
Steps:

1) Computeto,j and tp,j for each columnj satisfying
rank

([
uΩj

,hΩj

])
= 2.

2) Suppose that there exist barriers.

a) find j∗ andk∗ according to (10) and (11) respec-
tively.

b) Let tst = to,k∗ and computeu (tst).

3) Otherwise,tst = 0 andu (tst) = u.

IV. PERFORMANCEEVALUATION

Here, we introduce an error tolerance parameterǫe > 0. In
practice, instead of requiring exact data matching, it usually
suffices to have‖PΩ (X ′)−XΩ‖2F < ǫe ‖XΩ‖2F for some
small ǫe. In our simulations, we setǫe = 10−6.

We tested the SET algorithm by randomly generating low-
rank matricesX and index setsΩ. Specifically, we decom-
pose the matrixX into X = UXSXV T

X
, where UX ∈

Um,r, VX ∈ Un,r, and SX ∈ R
r×r. We generateUX

and VX from the isotropic distribution on the setUm,r

and Un,r, respectively. The entries of theSX matrix are
independently drawn from the standard Gaussian distribution
N (0, 1). This step is important in order to guarantee the
randomness in the singular values ofX. The index setΩ is
randomly generated from the uniform distribution over the set
{Ω′ ⊂ [m]× [n] : |Ω′| = |Ω|}.

The performance of the SET algorithm is surprisingly good.
For the results presented in Table I, we tested different
matrices with different ranks. For each size and each rank,
we tried different sampling rates, defined as|Ω| / (m× n).
The SET algorithm succeeds for all the realizations that
we generated. We also compare the SET algorithm to other
matrix completion algorithms. As shown in Figure 2, the SET
algorithm outperforms all known completion approaches2. In
simulations, the number of iterations of the SET algorithm
did not exceed 500, while that of other completion algorithms
were set to 2000. All tested algorithms had run-time of the
same order.

Matrix Size Ranks Sample Rates
# of Real-

izations
Recovery

Rate
9× 9 1, 2 1/27, 2/27, · · · , 1 500 100%

50 × 50 1, 2, 3, 4 0.04, 0.08, · · · , 1 200 100%

TABLE I: The performance of the SET algorithm.
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