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ABSTRACT
In the class of systems with linear precoder and zero-

forcing (ZF) DFE for zero-padded MIMO frequency selec-
tive channels, existing optimal transceiver designs present
two major drawbacks. First, the optimal system requires a
large number of bits to encode the full precoding matrix.
Second, the full precoding matrix leads to complex compu-
tations. These disadvantages become more severe as band-
width (BW) efficiency increases. In this article, we propose
using the block diagonal geometric mean decomposition
(BD-GMD) technique to design an alternative transceiver.
The proposed ZF-BD-GMD system uses a block diagonal
orthogonal precoder matrix structure to reduce the required
number of encoding bits and simplifies the computation.
While solving the current optimal system’s drawbacks, the
ZF-BD-GMD system also produces a similar bit error rate
(BER) performance when the block size is large. In other
words, the ZF-BD-GMD system is asymptotically optimal
in the class of communication systems with linear precoder
and ZF-DFE receiver. 1

Index Terms— Decision Feed Back, Szego’s Theorem,
Geometric Mean Decomposition, Block Diagonal Matrix,
Block Toeplitz Matrix.

I. INTRODUCTION
In high-rate digital communication systems, MIMO fre-

quency selective (FS) channels complicate the transceiver
design process because of the inter-block-interference (IBI)
effect. However, by applying the zero-padding precoding
technique, we can eliminate the IBI and convert the FS
channel into an equivalent block channel [7], [1]. From
the equivalent block channel matrix, we can derive the
optimal system (which we call the ZF-Optimal system) for
systems using linear precoder and zero-forcing DFE (ZF-
DFE) [8]. However, the ZF-Optimal system suffers from two
drawbacks. First, it requires a large number of bits from
the receiver to encode the full precoding matrix and feed
it back to the transmitter [4]. Second, the full precoding
matrix multiplication is computationally complex. These
disadvantages become more apparent when the block size
is large.

The block diagonal GMD (BD-GMD) is proposed in [3]
to design transceivers for MIMO broadcast channels. In this
paper, we propose the use of the BD-GMD technique to
design a transceiver that solves the above mentioned draw-
backs. A ZF-BD-GMD system, which uses block diagonal
unitary precoder and ZF-DFE receiver, is proposed. Since the
ZF-BD-GMD system’s precoder is block diagonal, it requires
a much less number of bits to encode the precoding matrix.

1This work is supported in parts by the ONR grant N00014-08-1-0709,
and California Institute of Technology.

In addition, the matrix multiplication at transmitter is much
simpler due to the block diagonal structure.

We also analyze the performance and the implementa-
tion cost of the proposed system, and find four important
properties. First, subchannel gains are non-increasing with
channel indices. Second, a tight lower bound for the worst
subchannel gains is provided. Third, we prove that as the
block size gets larger and approaches infinity, the BER
ratio between the ZF-BD-GMD system and the ZF-Optimal
system also approaches unity. In this case, the resulting BW
efficiency also approaches unity. In other words, the ZF-
BD-GMD transceiver performs similarly to the ZF-Optimal
system when the block size is large. Fourth, there are many
zero elements in the feedforward and the feedback matrices.
This leads to simple computations and therefore reduces
implementation cost in the receiver.

Summarizing the four properties, the ZF-BD-GMD sys-
tem is asymptotically optimal in the class of systems with
linear precoder and ZF-DFE. With much less complexity
in transmitter and receiver implementations, the proposed
ZF-BD-GMD system is more desirable than the ZF-Optimal
system.

Our finding is presented in the following sections: Section
II introduces the signal model and some preliminaries; Sec-
tion III discusses the proposed ZF-BD-GMD system; Section
IV provides numerical simulations. Concluding remarks are
given in Section V.2

II. SIGNAL MODEL AND PROBLEM
FORMULATION

We consider a point-to-point communication system with
NT transmit antennas and NR receiving antennas. The input-
output relation of the frequency selective MIMO channel can
be expressed as

yi =

L∑
k=0

Hkxi−k + ni (1)

where xi is the NT × 1 transmitted signal, H(z) = H0 +
H1z

−1+ · · ·+HLz
−L is the Lth order NR×NT frequency

selective FIR MIMO channel, ni is the additive channel
noise, and yi is the NR × 1 received vector. The noise
covariance matrix is assumed to be Rn = σ2

nI. The zero-
padded system is to transmit NP zero vectors after every
K symbol vectors. That is, in K + NP symbol durations,

2The following notations are used in the paper. Boldface upper-case let-
ters denote matrices, boldface lower-case letters denote column vectors, and
italics denote scalars. The superscript (·)H denotes transpose conjugation.
[A]ij denotes the (i, j)th element of the matrix A. [A]i×j denotes the
i× j matrix containing the first i rows and j columns of the matrix A. By
A � B, we mean A−B is positive semi-definite.
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the following is transmitted: {x1,x2, · · · ,xK ,0, · · · ,0}. In
order to prevent contamination from previous blocks, one
must choose NP ≥ L. The bandwidth efficiency is defined
as

ε =
K

K +NP
(2)

Note that as long as NP ≥ L, the I/O relation is not affected
even if we choose larger NP . Therefore it is desirable to
choose NP = L, so that the BW efficiency is maximized
to be K/(K + L). In this case, the I/O relation of the ZP
system can be expressed as an equivalent block channel:⎡

⎣ y1
y2
.
.
.

yK+L

⎤
⎦

︸ ︷︷ ︸
yZP,K

= HZP,K

⎡
⎣ x1

x2
.
.
.

xK

⎤
⎦

︸ ︷︷ ︸
xZP,K

+

⎡
⎣ n1

n2
.
.
.

nK+L

⎤
⎦

︸ ︷︷ ︸
nZP,K

(3)

where

HZP,K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0 0 · · · 0

H1 H0

. . .
.
.
.

.

.

.
.
.
.

. . . 0

HL

.

.

.
. . . H0

0 HL

. . .
.
.
.

.

.

.
. . .

. . .
.
.
.

0 · · · 0 HL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where K in the subscript denotes that HZP,K has KNT

columns. Here we assume (K + L)NR ≥ KNT , so that it
is possible to achieve the zero-forcing condition.

We consider the system where the transmitted vector is
linearly precoded by a NTK × NTK matrix P: xZP,K =
Ps, where s = {sT1 , sT2 , · · · , sTK}T , and si is the NT × 1
transmitted symbol vector. Here we assume the transmit-
ted signal is zero-mean and uncorrelated, with covariance
E[sis

H
j ] = δ(i − j)σ2

sI. Each symbol is selected from the
same constellation. We define a constant α, which stands for
the noise to signal symbol power ratio:

α
.
= σ2

n/σ
2
s . (5)

The power on the transmitted vector xZP,K is restricted to
be ≤ KNTσ

2
s . Since the transmitted symbol is white, the

constraint on the precoder becomes Tr[PPH ] ≤ KNT . Note
that the power constraint is increasing linearly with K, which
is crucial to make fair comparison for systems with different
value of K. We consider the QAM constellation. In this case
the BER will be the function of SINR of the input to the
decision device [6], i.e.,

BER(SINRi) = γQ(β
√

SINRi) (6)

where γ and β are constants which depend on the con-
stellation, and Q(·) is the Q-function defined as Q(x) =
(1/

√
2π)

∫∞
x

e−λ2/2dλ.
We can treat the I/O relation (3) as an effective block

channel communication system. For the zero-forcing case,
the optimal solution for minimizing the average BER under
the total power constraint is suggested by the Theorem 1
in [8]. The optimal precoder is with no loss of generality a
unitary matrix. The optimal receiver is the corresponding op-
timal ZF-DFE solution suggested in section III in [8]. Based
on the no-error-propagation assumption, the resulting system

acts similar to parallel independent Gaussian channels with
channel gains [L]ii, where L is the matrix such that the
QR decomposition of HP is HP = QLH . Here P is the
optimal precoder, Q is a unitary matrix, and LH is a upper
triangular matrix.

However, the optimal precoder for ZF DFE suffers from
two disadvantages mentioned in Sec. I. To resolve these two
drawbacks, we propose using BD-GMD theory [3] to design
the transceiver.

III. ZERO FORCING BD-GMD SYSTEM
The block-diagonal geometric mean decomposition (BD-

GMD) technique was introduced in [3] to design transceivers
that use dirty-paper coding for MIMO broadcast channels.
The schemes in [3] decompose each user’s MIMO channel
into parallel subchannels with identical SNRs/SINRs, thus
equal-rate coding can be applied across the subchannels of
each user.

In this section we introduce the Zero-Forcing BD-GMD
(ZF-BD-GMD) system, which uses block diagonal uni-
tary linear precoder and zero-forcing DFE for zero-padded
MIMO FS channels. Let us consider the BD-GMD of
the matrix HH

ZP,K , i.e., (the algorithm for computing the
decomposition is in Sec. III-A in [3])

HH
ZP,K =

⎡
⎢⎢⎣

P1 0 · · · 0

0 P2

. . .
.
.
.

.

.

.
. . .

. . . 0
0 · · · 0 PK

⎤
⎥⎥⎦

︸ ︷︷ ︸
P

⎡
⎢⎢⎣

L1 0 · · · 0

× L2

. . .
.
.
.

.

.

.
. . .

. . . 0
× · · · × LK

⎤
⎥⎥⎦

︸ ︷︷ ︸
L

QH

where Pi’s are NT × NT unitary matrices, Q is a (K +
L)NR × KNT matrix with orthonormal columns, each
NT ×NT matrix Li is lower triangular with equal diagonal
terms ri within itself, and ‘×’ refers to some nonzero
entries. The proposed BD-GMD transceiver is based on this
decomposition. The block diagonal precoder is chosen as the
block diagonal matrix P, and the receiving forward filter
is chosen as QH . Since Q has orthonormal columns, the
channel noise after QH is still white with variance σ2

n. The
effective channel after the linear precoder P and feedfor-
ward filter QH acts like a triangular channel matrix LH

with additive white Gaussian channel noise. This triangular
structure facilitates simple decision feedback equalization.
Fig. 1 shows the transceiver structure of the ZF-BD-GMD
system.

Fig. 1. The ZF-BD-GMD transceiver.

As in many analyses of DFE systems [9], we assume
that there is no error propagation. Based on this assumption,
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the overall system behaves similar to a system with KNT
independent parallel SISO AWGN channels. Each channel
has identical noise variance σ2

n but with a different channel
gain [L]ii. Since the transmitted symbol has energy σ2

s ,
the SINR in ith stream before the detection device is
SINRi = |[L]ii|2σ2

s/σ
2
n = |[L]ii|2/α. The BER of ith

stream will be the function of SINR [6], i.e., BER(SINRi) =
γQ(β

√
SINRi) = γQ(β

√|[L]ii|2/α). Therefore, to analyze
the performance of the ZF-BD-GMD system, we have to
study the diagonal terms of L.

Since the small lower triangular Li has identical diagonal
terms, we use ri to denote the diagonal terms in Li. From
the property of BD-GMD (Eq. (21) in [3]), we have

ri =

(
det(HH

ZP,iHZP,i)

det(HH
ZP,i−1HZP,i−1)

) 1
2NT

(7)

We notice that ri is independent of the block length K.
That is, even if we increase K, it does not change the
previous symbol stream performance. The following is our
first theorem.

Theorem 3.1: rm is non-increasing. That is, for m ≥ 2,
rm ≤ rm−1.

Proof: We define

H̃m
.
=
[
HH

m HH
m+1 · · · HH

L

]⎡⎢⎣
H0
H1

...
HL−m

⎤
⎥⎦ (8)

for m = 0, 1, · · · , L, and H̃m = 0 for m > L. We also
define

H̃−k = H̃H
k

Based on the Block Toeplitz structure of HZP,m, we can
write

HH
ZP,m+1HZP,m+1 =

[
HH

ZP,mHZP,m BH
m

Bm H̃0

]
(9)

where Bm =
[
H̃−m H̃−(m−1) · · · H̃−1

]
=[

H̃−m Bm−1

]
. By taking the Schur form [2] of (9) and

taking the determinant, we have det(HH
ZP,m+1HZP,m+1) =

det(HH
ZP,mHZP,m) det(H̃0 −Bm(HH

ZP,mHZP,m)−1BH
m).

Using (7), rm can be written as

rm = det(H̃0 −Bm−1(H
H
ZP,m−1HZP,m−1)

−1BH
m−1)

1
2NT

If we define Cm = [ H̃1 H̃2 · · · H̃m ], we have

Bm(HH
ZP,mHZP,m)−1BH

m

= [ H̃−m Bm−1 ]

[
H̃0 Cm−1

CH
m−1 HH

ZP,m−1HZP,m−1

]−1 [
H̃H

−m

BH
m−1

]
� Bm−1(H

H
ZP,m−1HZP,m−1)

−1BH
m−1

where the last inequality follows from Lemma 1 in [10].
Therefore, we are able to establish the inequality

H̃0 −Bm(HH
ZP,mHZP,m)−1BH

m

� H̃0 −Bm−1(H
H
ZP,m−1HZP,m−1)

−1BH
m−1

Taking the determinant, we arrive at rm+1 ≤ rm.

Theorem 3.1 states that the subchannel gains of the ZF-
BD-GMD system are in a non-increasing order. Thus, when
we increase K to increase the BW efficiency, the additional
sub-streams will never have better performance than the
existing ones.

Although the subchannel gains are non-increasing, in
Theorem 3.2 below we provide the tight lower bound for
the worst subchannel gain.

Theorem 3.2: Suppose H̃(ejω)
.
=

∑∞
k=−∞ H̃ke

−jkω. If

−∞ <
∫ π

−π
log det H̃(ejω)dω, then the worst substream

channel gain is lower bounded as follows:

lim
M→∞

rM
.
= r = exp

(
1

2NT

∫ π

−π

log det H̃(ejω)
dω

2π

)

The proof can be found in [10]. The above two theorems
facilitate the derivation of the third theorem, which states the
asymptotic optimality of the ZF-BD-GMD transceiver. The
proof can be found in [10] as well.

Theorem 3.3: The average BER of the ZF-BD-GMD
transceiver approaches the average BER of the ZF-Optimal
system. That is,

lim
K→∞

BERZFBDGMD(K)

BERZFoptimal(K)
= 1

where BERZFBDGMD(K) and BERZFoptimal(K) denote
the average BER of the ZF-BD-GMD system and the ZF-
Optimal system, respectively, when the block size is K.
Thus, the ZF-BD-GMD transceiver is asymptotically optimal
when K → ∞.

III-A. Implementation Cost of the ZF-BD-GMD system
For the transmitter side, the total cost of forming the

transmitted vector xZP,K is K matrix (with size NT ×NT )
multiplications, which is in the order of O(KN2

T ). Com-
pared to O(K2N2

T ) in the ZF-Optimal system, there will be
K times saving. Now let us look at the receiver side. The
lower triangular feedback matrix L consists of K×K blocks
and each block is an NT×NT matrix. The matrix Q consists
of (K+L)×K blocks and each block is an NR×NT matrix.
Both L and Q contains many zero elements:

Theorem 3.4: In the ZF-BD-GMD system, L and Q both
have lower block bandwidth3 L, where L is the order of the
frequency selective channel. That is, whenever i > j + L,
the (i, j)th block in L is a 0NT×NT

zero matrix, and the
(i, j)th block in Q is a 0NR×NT

zero matrix.

The proof can be found in [10]. Since L is a lower
triangular matrix, this theorem implies L is a block banded
matrix with (L + 1) bands (including the main block diag-
onal). We can calculate the approximate number of non-

zero entries in L:
(

(2K−L−1)L
2

)
N2

T + K
(

N2
T+NT

2

)
≈

K
(
(L+ 1/2)N2

T +NT /2
)
, which grows linearly with K

when K is large. In the ZF-Optimal system, the number of
non-zero entries in L is (K2N2

T +KNT )/2. The number of
non-zero entries in L corresponds to the number of feedback
paths in the DFE. Therefore, the ZF-BD-GMD systems saves
tremendously in the number of feedback paths. The number
of non-zero entries in Q corresponds to the number of

3The block bandwidth for a block matrix is defined similarly to the
bandwidth defined in p. 152 of [2] originally for matrix with scalar entries.
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operations when the signal is passed through the feedforward
filter. We can also calculate the number of non-zero entries in
Q: NTNR(K+L)K−NTNR(K

2−K)/2 ≈ NTNRK
2/2

when K is large. In contrast to the ZF-Optimal system,
in which the number of non-zero entries in Q is about
NTNRK

2, the ZF-BD-GMD feedforward part saves half of
the operations.

To summarize, the proposed ZF-BD-GMD system is
asymptotically optimal when K is large. In addition, it
has much less complexity in the transmitter and receiver
implementations.

III-B. Lazy Precoder for SISO FS Channels
For the SISO case (NT = NR = 1), the precoder in

the ZF-BD-GMD system will be diagonal and unitary. It
can be proved (see [10]) that the ZF-BD-GMD system has
the same BER performance as the lazy precoder system,
(i.e., with identity precoder). Thus the lazy precoder system
inherits all the benefits from the ZF-BD-GMD system.
Therefore, the lazy precoder system is asymptotically optimal
when K → ∞. This makes the lazy precoder system a
more favorable design than the ZF-Optimal system, since
it requires no channel information and no precoding in the
transmitter.

IV. NUMERICAL SIMULATIONS
In the numerical simulations, symbols are generated using

gray encoded QPSK constellations with each symbol power
σ2
s . For each case, 103 Rayleigh fading channels are used for

the Monte Carlo simulations. Those channels have the entries
coming from i.i.d complex zero-mean Gaussian distributions
with unit variance. The additive channel noise has covariance
matrix Rn = I.

In Fig. 2 we show the simulation results for the case
of two transmitting antennas and two receiving antennas.
The MIMO channels have order L = 2. The zero-forcing
system performances for K = 3, K = 10, and K = 20
are shown. The ZF-Optimal system appears to have the
best performance for all K. For a large K, the ZF-BD-
GMD system performs similarly to the ZF-Optimal system.
This is consistent with Theorem 3.3. The performance of
systems with lazy precoder and ZF DFE is also plotted for
comparison.

V. CONCLUDING REMARKS
The ZF-BD-GMD system has been proposed to address

the two well-known drawbacks in the optimal system for
zero-padded MIMO frequency selective channels. The ZF-
BD-GMD system is shown to be asymptotically optimal
when the bandwidth efficiency approaches unity. In addition,
it has much lower implementation cost than the optimal
system. Thus, it appears to be a favorable candidate for prac-
tical implementation. We also discussed the tradeoff between
the BW efficiency and the BER performance for the ZF-
BD-GMD system and the ZF-Optimal systems. Numerical
simulations were provided to confirm the theoretical findings
in this paper. This paper focus on the ZF-DFE. The case
with MMSE-DFE is under investigation. It appears that by
performing the BD-GMD on

[
HH

ZP,K

√
αI

]
, similar results

for the MMSE-DFE case can be obtained.

VI. REFERENCES
[1] C. Y. Chen, and P. P. Vaidyanathan, “Precoded FIR and

redundant V-BLAST systems for frequency-selective
MIMO channels,” IEEE Trans. Sig. Proc. pp. 3390 -
3404, Jul. 2007.

−8 −6 −4 −2 0 2 4 6 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

σ
s
2 (dB)

B
E

R ZFBDG,K=3
ZFBDG,K=10
ZFBDG,K=20
ZFOPT,K=3
ZFOPT,K=10
ZFOPT,K=20
ZF−Lazy,K=3
ZF−Lazy,K=10
ZF−Lazy,K=20

Fig. 2. The BER performance of the zero-forcing systems
for MIMO (NT = NR = 2) Rayleigh channels of order 3,
with K = 3, K = 10, and K = 20. “ZFBDG” represents the
ZF-BD-GMD system; “ZFOPT” represents the ZF-Optimal
system; and “ZF-Lazy” represents the lazy precoder with
zero-forcing DFE.

[2] G. H. Golub, and C. F. Van Loan, Matrix computations,
The Johns Hopkins Univ. Press 1996.

[3] S. Lin, W. L. Ho, and Y. C. Liang, “Block diagonal
geometric mean decomposition (BD-GMD) for MIMO
broadcast channels,” IEEE Trans. Wireless Comm., vol.
7, no. 7, pp. 2778 - 2789, Jul. 2008.

[4] D. J. Love, R. W. Heath, V. K. N. Lau, D. Gesbert,
B. D. Rao, and M. Andrews, “An overview of limited
feedback in wireless communication systems,” IEEE
Selected Areas in Comm., vol. 26, no. 8, pp. 1341 -
1365, Oct. 2008.

[5] S. Ohno, “Performance of Single-Carrier Block Trans-
missions Over Multipath Fading Channels With Linear
Equalization,” IEEE Trans. Sig. Proc., vol. 54, No. 10,
pp. 3678 - 3687, Oct. 2006.

[6] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint
Tx-Rx beamforming design for multicarrier MIMO
channels: a unified framework for convex optimization,”
IEEE Trans. Sig. Proc. pp. 2381 - 2401, Sept. 2003.

[7] A. Scaglione, G. B. Giannakis, and S. Barbarossa, “Re-
dundant filterbank precoders and equalizers Parts I and
II,” IEEE Trans. Signal Process., vol. 47, no. 7, pp. 1988
- 2022, Jul. 1999.

[8] M. B. Shenouda, T. N. Davidson, “A design framework
for limited feedback MIMO systems with zero-forcing
DFE,” IEEE Trans. Selected Areas in Comm., vol. 26,
pp. 1578 - 1587, Oct. 2008.

[9] M. B. Shenouda, T. N. Davidson, “A framework for de-
signing MIMO systems with decision feedback equaliza-
tion or Tomlinson-Harashima precoding,” IEEE Journal
on Selected Areas in Commun., vol. 26, No.2, pp. 401
- 411, Feb. 2008.

[10] C. C. Weng, and P. P. Vaidyanathan, “Block diagonal
GMD for zero-padded MIMO frequency selective chan-
nels,” submitted to IEEE Trans. Sig. Proc.

3205


