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ABSTRACT

The Laplacian model is the standard distribution for correlation noise

estimation at the turbodecoder in Wyner-Ziv coding schemes. In

practice, this hypothesis is not always satisfied and, regularly, the

estimated model sensibly differs from the error distribution. In this

work, we prove that using a model better fitted to the true distribu-

tion improves the performances, and we thus propose to use the more

general exponential power distribution (EPD) which has never been
tested in a distributed video coding context. Gains in rate-distortion

over the Laplacian model are illustrated by results on several video

sequences, showing that the EPD model outperforms the Laplacian
one in off-line (oracle) as well as in on-line (practical implementa-

tion) modes. These results also indicate that, in some cases, the on-

line EPD model reduces the bitrate even over the off-line Laplacian
model.

Index Terms— Wyner Ziv, distributed video coding, Laplacian

model, Generalized Gaussian, side information

1. INTRODUCTION

Distributed video coding (DVC) is a quite recent paradigm with

numerous applications. This information theoretic framework was

shown to enable video transmission techniques with a reduced com-

plexity at the encoder without affecting the global rate distortion

performances. This is an important feature for low power systems

such as cell phones, video surveillance or sensor networks. DVC is

based on a fundamental result of information theory from Slepian

and Wolf [1], later extended by Wyner and Ziv [2]. They proved that

two correlated sources can be independently encoded without af-

fecting the transmission performances, provided that they are jointly

decoded. In the particular case of video transmission, the study of

frame correlation can be avoided at the encoder side, without reduc-

ing the reconstructed visual quality or increasing the transmission

rate.

Two main solutions have been proposed by now for DVC: the

PRISM [3] and the Stanford one [4]. In our work, we adopt the sec-

ond approach, which consists in separating the video sequence into

two sets of frames: the key frames (KFs) and the Wyner-Ziv frames

(WZFs). The KFs are transmitted using an intra codec (H.264 in

this scheme) and are used at the decoder to compute an estimation

of the WZFs. This estimation is called side information (SI) and is

commonly generated through temporal interpolation methods [5].

At the encoder side, the WZFs are DCT transformed, quantized and

then turbo encoded. At the decoder, the SI is corrected with the

parity bits sent by the WZ encoder. Finally, an inverse DCT is ap-

plied on the resulting coefficients. This channel encoding/decoding

process is performed under the assumption that the estimation error

can be considered as a channel error. The turbo decoding process

needs a model for the correlation noise between the WZF and its SI

and the performances of the codec highly depend on the quality of

this model. In the literature [6, 7], this correlation noise is usually

estimated with a Laplacian model. The parameters of the Laplacian

can be estimated “off-line” [6], meaning that the true error between

the WZF and its SI is computed and used for parameter estimation.

A more realistic solution [8] estimates the parameters “on-line”.

The error between the WZF and its SI is approximated by a residual,

which is the difference between the two motion compensated KFs

used for the SI construction.

The Laplacian hypothesis is not always satisfied, as illustrated by

the examples in Fig. 1. These phenomena, observed under different

conditions, occur very often in practice. To better fit to the shape

of a wider range of distributions, a more general model needs to be

considered. The Exponential Power Distribution (EPD), sometimes
named “Generalized Gaussian”, covers a wide range of classical dis-

tributions including the Gaussian and the Laplacian ones. The EPD
model was shown to suit well the distribution of wavelet coefficients

of signals and images [9]. It later proved to be useful for appli-

cations in image denoising [10] or coding [11]. This distribution

has also been proposed for modelling DCT coefficients of natural

images [12]. So far the EPD has never been considered in the DVC
framework and more precisely at the turbodecoding step to estimate

the distribution of the difference between a SI and the corresponding

original WZF.

A change of model raises the question to know whether a dis-

tribution better fitted to the error leads to an improvement in the

rate-distortion (RD) performances. Consequently, after recalling,

in Sec. 2, the estimation methods of the Laplacian parameter in the

context of state-of-the-art DVC and after describing two classical

methods to estimate the parameters of an EPD, we propose in Sec. 3
an original approach for validating if the distance, measured by dif-

ferent distortion metrics, between the estimated distribution and the

error, is correlated with the RD coding performances. Finally, in

Sec. 4, we compare the coding results obtained under a Laplacian or

an EPD model.

2. PARAMETER ESTIMATION

2.1. Notations

We first introduce some notations. Let X denote the original WZ
frame, while Ib and If correspond to the backward and forward

decoded reference frames. At the decoder, the side information is

denoted by Y , and we introduce the residual, R, defined as the
difference between the forward and backward motion compensated

frames. If s = (x, y) is a given pixel and the backward and the for-
ward motion vector fields are denoted by MVb and MVf , then Y
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Fig. 1. Examples of error distributions and the associated Laplacian model, for different bands and different sequences.

and R can be written as:

Y (s) =
Ib(s+ MVb(s)) + If (s+ MVf (s))

2
, (1)

R(s) =
Ib(s+ MVb(s)) − If (s+ MVf (s))

2
. (2)

X, Y and R are then transformed with a 4× 4 integer DCT, and the
ith coefficients in the k ∈ [1, .., 16] band are denoted respectively
by xk,i, yk,i and rk,i. At the decoder side, the turbo decoder needs

an approximation of the probability px|y(x).
In early papers on DVC [6], the coefficients were estimated off-line,

meaning that it was assumed that the coefficients were considered

as known at the decoder. In practice, this is unrealistic, since the

estimation error ek,i = xk,i − yk,i is computed at the decoder. An

on-line solution has been proposed by Brites et al. [7, 8]: the errors

ek,i are replaced by the residual coefficients rk,i.

As emphasized earlier, the Laplacian pdf is commonly used in the

literature to model the correlation betweenX and Y . The underlying
assumption is that the correlation depends on the band, but remains

stable inside a band. In the two following sections we will explain

how to estimate the parameters of the Laplacian and Generalized

Gaussian distributions from the error coefficients ξk = (ξk,i)1≤i≤N

in a given subband (corresponding to ek,i in off-line mode and rk,i

in on-line mode).

2.2. Laplacian model

Let us first recall the Laplacian probability distribution function

(pdf):

flap(x) =
1

2α
e−

|x|
α . (3)

Given a set of zero-mean observations ξk, the parameter α is esti-
mated by first computing an estimation of the second order moment

µ2 of the vector (under the zero-mean assumption, µ2 is actually the

variance). The estimation bα is then obtained as: bα =
p

µ2/2.
As proposed in [7], the on-line estimation of α can be performed at a
finer level of precision which consists in calculating another α value
for some deficient coefficient inside a band. This approach is used

for experimental results in this work.

2.3. Exponential power distribution model

The pdf of an EPD with zero mean and parameters α ∈ R
∗
+ and

β ∈ R
∗
+ reads

fgg(x) =
β

2αΓ
“

1

β

”e
−

“
|x|
α

”β

,

where Γ(x) =
R∞

0
tx−1e−tdt is the classical “gamma” function.

Several methods are available to compute the parameters (α, β) of
the EPD, among them, we choose to work with the maximum like-
lihood estimation and the moment estimation.

The idea of the so called “moment method” is to compute the mo-

ments of order 2 and 4, µ2 and µ4, of the observations ξk. It can

then be shown that:
µ4

µ2

2

=
Γ

“
5

β

”
Γ

“
1

β

”

Γ

“
3

β

”
2 = g(β) and thus the estimate

(bα, bβ) of (α, β) is given by

bβ = g−1(κ) and bα =

vuuut
Γ
“

1

bβ

”

Γ
“

3

bβ

”µ2. (4)

The second method relies on the assumption that the samples in ξk

are independent and identically distributed, the computation of the

maximum of likelihood leads to an estimation of (α, β). It can be

shown that bβ can be computed as the argmin of the following func-
tion:

h(β) =
1

β
− ln

0
@ β

Γ
“

1

β

”

1
A+

1

β
ln

 
β

N

NX

i=1

|ξk,i|
β

!

and bα is given by: bα =
“

bβ
N

PN

i=1
|ξk,i|

bβ
” 1

bβ .

3. APPROACH VALIDATION

As seen in Fig. 1, the Laplacian model is not always fitting the error

distribution. In this section, we thus study wether the decoding per-

formances are improved by using a model which better fits the actual

noise distribution.

For a band b, the error lies between a minimum value, min, and a
maximum value, max. In this range, a model is estimated at the
decoder, the obtained function is denoted by f . LetHb be the distri-

bution of the error ( i.e., the histogram of error values). To evaluate

the discrepancy between Hb and f , many classical measures can be
considered. In this work, we have chosen the following family of

functions:

da(f, Hb) =
maxX

n=min

|f(n) − Hb(n)|a ,

where a ∈ R
∗
+. For each band b of a given frame, two models

are estimated, f1 and f2. The decoding of this band is performed

and the obtained rate is denoted by r1
b if f1 has been used for the



turbo decoding (respectively r2
b if f2 has been used for the turbo

decoding). We recall that this rate corresponds to the number of bits

required to reach a bit error probability lower than 10−3. Let a be in
R

∗
+ and let us introduce the following Hypothesis, Hyp:

For each band, ∀(i, j) ∈ [1, 2]2, i 6= j,

da(fi, Hb) ≤ da(fj , Hb) ⇔ ri
b ≤ rj

b

Minimizing the distance between Hb and f is justified only if Hyp
is true. For four CIF test sequences, we test for every band of every

frame ifHyp is verified. For the experiments, f1 and f2 correspond

to a Laplacian and an EPD distributions. The obtained results are
presented in Tab. 1 for a ∈ {2, 1, 1

2
, 1

3
}, corresponding to the most

representative values among the experimental set.

d2 d1 d
1

2 d
1

3

waterfall 97 97 97 97

foreman 94 91 91 97

football 82 94 94 82

mobile 94 85 88 88

Table 1. % of measures whereHyp was verified.

The obtained statistics show that there is a strong correlation be-

tween the distances da and the measured rates. In other words, at-

tempting to fit well the histogram is justified by the fact that it is

likely to improve the performances. Based on this idea, in the next

section we test the performances of the EPD distribution.

4. EXPERIMENTAL RESULTS

In the previous section we proved that fitting well to the error dis-

tribution can improve the coding performances. In this section we

test the coding efficiency of using an EPD instead of the classical
Laplacian model employed in the literature.

4.1. Experimental setting

The presented experimental results were obtained with the DVC

scheme described in the introduction. Tests were run on two CIF

video sequences: “City” and “Football” (352 × 288, 30Hz) and one
QCIF sequence: Foreman (176 × 144, 15Hz). The 100 first frames
(50 KFs, and 50 WZFs) of each sequence are coded, and for each
coding configuration, the average rate (in kbps) has been measured.

To cover a wide range of rates, the methods have been tested at four

quantization levels (Q-Index for the WZFs | Q-Step for H.264 intra
coding of the KFs) chosen as follows: 1|42, 4|34, 6|31 and 8|28.
Tests are run both for the Laplacian and the EPD models, with
the on-line and off-line coefficient estimation modes. For the EPD
model, the maximum likelihood (ML) and moment (Mom) esti-

mation methods are both employed for “on/off-line” parameter

prediction. Results are shown in Tab. 2, presenting the average rate

gain (in %). These gains are estimated with the Bjontegaard metric
[13]. Additional results are shown in Tabs. 3 and 4, presenting

the bitrates obtained by different methods for the four quantization

levels on the CIF Football sequence and QCIF Foreman sequence.

Finally, Fig. 2 presents the RD results of the different models for the

CIF Football sequence. The following notations are used in these

tables: “Lapl” stands for Laplacian method and “On”, resp. “Off”

mean on-line and off-line estimation modes.

4.2. Comparison in the off-line setting

We first compare the results of the different methods in the off-line

mode. The corresponding results on the test sequences can be read

from the first two lines of Tab. 2, 3 and 4 and from the red plots of

Fig. 2. We see that on both videos the EPD model (in ML or Mom
case) needs a smaller bitrate than the Laplacian model, with average

bitrate gains up to 3.73% for Football (CIF) and 1.78% for Foreman
(QCIF). At high bitrate for these two sequences, the transmission

rate can be reduced by 194kbps with a CIF video and 44kbps with
a QCIF sequence. Another interesting conclusion is that the max-

imum likelihood estimation performs systematically better than the

moment method.

4.3. Comparison in the on-line scenario

A second comparison is performed in the on-line mode. The results

in this case are reported in the third and fourth lines of Tab. 2. Black

plots in Fig. 2 also present the on-line mode results for the Football

sequence. Once again, the EPD model outperforms the Laplacian
model. Yet, it is interesting to note that unlike the off-line setting,

the moment method yields better results than the ML, meaning that

the moment estimation method seems more robust. The bitrate gain

reaches 4.3% for the Football (CIF) sequence and 1.88% for the
Foreman video (QCIF). In Tabs. 3 and 4 we see that in the on-line

mode the EPD method reduces the transmission rate by 128kbps
for a CIF video and by 46kbps for a QCIF sequence when compared
with the Laplacian method. This realistic scheme also outperforms

H.264 intra coding (7% of rate saving, and 0.35dB of quality im-
provement for the Football sequence).

4.4. Comparison between the off-line and on-line settings

Finally, we compare the results obtained in the off-line and on-line

settings. Considering the fifth and sixth lines of Tab. 2, it is worth

noting that the loss incurred by switching from off-line to on-line is

slightly higher with the Laplacian model.

The last considered case is the comparison between Laplacian off-

line and EPD on-line, with results reported in the last line of Tab. 2
and in Fig. 2. It is interesting to note that the on-line results ob-

tained with EPD are better than the off-line results with the Lapla-
cian model for the Football and Foreman sequence. In other words,

it means that the EPD model with parameters computed without
knowledge of the original WZ performs better than the Laplacian

model with parameters estimated with this knowledge. For the City

sequence, these rates are close (0.44%) when considering the whole
bitrate range. Note that for this last sequence with high bitrates

(1600kbps to 4000kbps), we observe that the EPD on-line performs
slightly better (0.75% gain in bitrate) than the Laplacian off-line.

Method 1 Method 2 City Football Foreman

Lapl Off EPD Off ML -0.96 -3.73 -1.78

Lapl Off EPD Off Mom 1.21 -3.61 -1.52

Lapl On EPD On ML 0.36 -3.29 -0.90

Lapl On EPD On Mom -1.3 -4.30 -1.88

Lapl Off Lapl On 1.73 2.67 1.53

EPD Off ML EPD On Mom 1.4 2.10 1.39

Lapl Off EPD On Mom 0.44 -1.64 -0.38

Table 2. Rate gains (%) by method 2 over method 1 on City, Football

(CIF, 30Hz) and Foreman (QCIF, 15Hz) sequences.
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4.5. Discussion

Knowing that a better fitted distribution enables an improvement of

the RD permormances, the purpose of these tests is to measure the

reliability of the EPD model. Experimental results have shown that
the EPD model is finer than the Laplacian one, yielding bitrate im-
provements on the considered test sequences. Improvements may of

course vary from one video to another depending on how close the

residual distribution is to a Laplacian one. We also want to empha-

size that the gains obtained in this paper can be compared to those of-

fered by other works involving refinements of the noise model [7, 8].

Moreover, another purpose of this work was to propose a realistic

model, in the sense that it does not need the knowledge of the orig-

inal WZ frame. This is precisely what is shown in Sec. 4.3 and

4.4. Indeed, we proposed an efficient on-line solution, which even

outperforms the off-line standard technique in some cases.

PSNR (in dB) 28.49 32.64 34.31 38.38

Lapl OFF 531 1402 2066 3916
EPD OFF MV 519 1351 1988 3722
∆rate (kbps) -12 -51 -78 -194

Lapl ON 552 1448 2103 3953
EPD ON Mom 532 1380 2019 3825
∆rate (kbps) -20 -68 -84 -128

Table 3. Rate results (kbps) on the Football sequence (CIF, 30Hz)

for different values of average PSNR.

5. CONCLUSION

In this paper, we have proposed a refinement of the correlation model

in DVC, by replacing the Laplacian distribution with an EPD, never
used in the WZ context. We proved that fitting well to the correlation

noise was directly correlated with a decreasing of the coding rate.

Experiments have confirmed that the more general EPD was a finer
model which improves the global rate-distortion performances.

PSNR (in dB) 31.36 34.4 36.44 39.94

Lapl OFF 225 424 624 1055
EPD OFF MV 224 421 611 1009
∆rate (kbps) -1 -3 -13 -44

Lapl ON 227 432 632 1080
EPD ONMom 226 425 622 1034
∆rate (kbps) -1 -7 -10 -46

Table 4. Rate results (kbps) on the Foreman sequence (QCIF, 15Hz)

for different values of average PSNR.
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