CONCAVE RESOURCE ALLOCATION PROBLEMS FOR INTERFERENCE COUPLED
WIRELESS SYSTEMS

Holger Boche, Siddharth Naik

Technical University of Berlin
Heinrich Hertz Institute (HHI)
Einsteinufer 25, 10587 Berlin
holger.boche @mk.tu-berlin.de
naik @hhi.fraunhofer.de

ABSTRACT

The paper characterizes the class of all concave resource allocation
problems in interference coupled wireless systems. An axiomatic
framework for interference functions proposed by Yates in 1995 is
used to model interference coupling in our paper. The paper shows
that there exists no transformation, which ensures concavity for all
linear interference functions for all functions of SINR. The paper
then characterizes the largest class of utility functions under a cer-
tain requirement, such that the corresponding class of utility func-
tions functions, which are a function of SINR in the s—domain are
concave. The paper shows that such a class of utility functions is a
restricted class due to a requirement, which ensures concavity. Fur-
thermore, the paper shows that the largest class of interference func-
tions, which ensures concavity for resource allocation problems are
the log—convex interference functions. These results differ from the
convex case, where we are interested in minimizing utility functions
of inverse SINR.

Index Terms— Resource allocation, interference coupled sys-
tems, utility maximization

1. INTRODUCTION

In wireless systems, we frequently encounter resource allocation
problems, which are functions of the signal-to—(noise) plus interfer-
ence ratio (SINR). We are often in a situation, where we would like
to maximize certain functions of SINR — to improve the system per-
formance, e.g. rate, capacity. It would be helpful for such functions
to be concave or be transformed into concave functions in a certain
domain. It is strongly believed, that the dividing line between “easy”
and “difficult” problems in optimization is convexity. Investigation
of concavity properties of functions of SINR are significantly dif-
ferent from investigating the convexity properties of function, which
are functions of inverse SINR. In the convex case, we would like
to minimize the functions of inverse SINR. We shall elucidate the
differences between the concave and convex cases, throughout the
paper.

We characterize the class of resource allocation problems, which
can be written as concave optimization problems, thereby establish-
ing inherent boundaries on concavity properties of functions in inter-
ference coupled wireless systems. We adopt an axiomatic approach
to model interference in our system. An axiomatic approach was
proposed by Yates in [1] with extensions in [2,3]. The Yates frame-
work of standard interference functions (discussed in detail in Sec-
tion 2.2) is general enough to incorporate cross-layer effects and it
serves as a theoretical basis for a plethora of algorithms, e.g. beam-
forming [4]
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[5] states that there exists no SINR based utility functions,
which are convex or concave in the power domain. Furthermore,
the sum of such weighted functions can never be convex or concave.
In this paper, we attempt to obtain concavity of certain resource
allocation problems, under an appropriate transformation. The main
contributions of this paper are as follows:

e Under very natural assumptions, we present an impossibility
result (Theorem 1), which states that there exists no trans-
formation 1, such that the function ¥ (sx)/Zx(¢(s)) for all
users k is jointly concave with respect to s, where Zj (¢(s))
is an interference function (more details in Section 5).

e Theorem 2 establishes the largest class of utility functions
(EConc), which are functions of SINR in the s—domain and
are concave. Due to a certain requirement of the theorem (ex-
plained in detail in Lemma 1) such a class of utility functions
is a restricted class. Furthermore, it is shown that the fam-
ily of exponential functions is the unique family of functions,
such that a relevant and frequently encountered function in
interference coupled wireless systems is jointly concave for
all linear interference functions and for all utility functions in
the class EConc.

e Theorem 3 proves that the largest class of interference func-
tions, which preserves concavity of resource allocation strate-
gies of interference coupled wireless systems is the family of
log—convex interference functions.

2. INTERFERENCE COUPLED WIRELESS SYSTEMS

In this paper we shall investigate the case of interference coupled
wireless systems. We begin, by providing certain notational conven-
tions used in the paper in Section 2.1 below.

2.1. Preliminaries and Notation

Matrices and vectors are denoted by bold capital letters and bold
lowercase letters, respectively. Let y be a vector, then y; = [y]; is
the I™ component. The notation y > 0 implies that y; > 0 for all
components [. x > y implies x; > y; for all components /. Similar
definitions hold for the reverse directions. & # y implies that the
vector differs in at least one component. Let F imply a set, with
the exception that 7 is used to represent a function. The set of non-
negative reals is denoted as R.. The set of positive reals is denoted
asRy . Lete¥ and log(y) denote component-wise exponential and
logarithm, respectively. Let g, f and 1) represent functions through-
out the paper.
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2.2. Interference Functions

In a wireless system, the users’ utilities can strongly depend on the
underlying physical layer. An important measure for the link per-
formance is the SINR. Consider K users with transmit powers p =
[p1,...,px]" and K := {1,..., K'}. The noise power at each re-
ceiver is 2. Hence the SINR at each receiver depends on the ex-
tended power vector p = [p,0*]" = [p1, ..., pr,c>]". The result-
ing SINR of user & is SINRy, (B) = % =V (B) where 7}, is the
interference (plus noise) as a function of p. In order to model inter-
ference coupling, we shall follow the axiomatic approach proposed
in [1,3]. The general interference functions possess the properties
of conditional positivity, scale invariance and monotonicity with re-
spect to the power component and strict monotonicity with respect
to the noise component. For further details, kindly refer to the Ap-
pendix 5.

2.3. Impact of Interference Coupling

Users in a wireless systems coupled by interference are intrinsically
competitive. Each of them is principally interested in maximizing
their own utility and have little or no regard for the utilities of the
other users and for the entire system utility. Such neglect of course
does not come for free. Such a characterization is accompanied by
a pre-condition that there must be at least one user k € K who sees
interference from another user j € K and j # k, i.e. it must not be
possible to completely orthogonalize all the users in the system. If
the users are completely orthogonalized, then they are coupled only
by the constraints on the resource allocation strategy and there is no
“competition” in the sense as we describe in this section.

Example 1. Consider the function u(p) = log(p, /Zr(p)). The
corresponding problem of maximizing the function f(p,w) =
> wex wruk(p) is the often encountered weighted proportional
fairness problem. Function f(p,w) is not jointly concave with re-
spect to p, for all non—orthogonal systems of users, for all weight
vectors w > 0. Function f(p,w) is not jointly concave even for
fixed linear interference functions, e.g. Zx(p) = >, Vmip, + 67,
where vy, is the link-gain between transmitter [ and receiver k.

[5] states that if ws is the rate of user k, then the following
sum of weighted rate maximization problem is not concave opti-
mization problem with respect to p for all non—orthogonal system
of users. We now investigate the possibility of suitably transforming
the problem, so as to obtain a concave objective function for resource
allocation problems in Section 3.

3. ANALYSIS OF CONCAVITY PROPERTIES OF
RESOURCE ALLOCATION PROBLEMS

In this section, we shall analyze concavity properties of functions of
SINR. Before we delve into our analysis, we shall briefly review the
concepts of feasible SINR regions and feasible quality—of-service
(QoS) regions. The feasible SINR region F is the set of all feasible
SINR vectors 7, that can be supported for all users by means of
power control, with interference being treated as noise. We define P
as the set of vectors, which satisfy certain power constraints, e.g.

e for the case of total power constraints: P := {p | p =

[P, PE], Yok Pk < Pow}, Where Pow is the total
power constraint,

e for the case of individual power constraints: P := {p | p <
P}, where p = [p1,...,Pk] are the individual power con-
straints, and

e for the case of individual and total power constraints: P :=
{p | p= [p17 s 7pK]7Zkg)Cpk < Rotahp < ﬁ}

The feasible SINR region F can be written as follows:
F={3[3p>0,p€P,%(P) > 7 € Ry,Vk € K} (1)
and the corresponding feasible QoS region is
U ={u |3y € Fur(w(p)) > ux,ur € Ry, Vb € K} (2)

‘We know from [6] and the references there in, that the feasible SINR
region (F) is in general not convex'. Furthermore, we also know
from [5], that we can never have joint concavity of the SINR in the
power domain. Hence, we would like to investigate the possibility
of finding a suitable transformation ) (or )~ 1), which

1. transforms the problem from the power domain to the s—
domain, i.e. wfl : Ry — S, where S = R, s € S and
the inverse SINR and functions of inverse SINR are jointly

convex wrt. § = [s1,...,Sk],

2. transforms the feasible SINR region into a convex feasible
QoS set U, where w71(%) = uy, forallk € Kand u € U.

While finding our transformation ) ~*, we shall assume that: trans-
Sormation 1 (s) = p is strictly monotonic increasing and twice con-
tinuously differentiable, throughout the paper.

The feasible SINR region is convex on the logarithmic scale’
We now return to problem of finding a suitable transformation ).
To formalize the conditions 1) and 2) we introduce the following
requirement.

Requirement 1. For all linear interference functions, the support-
able QoS region U resulting from the transformation v, = ¥ (ux),
u = [u1,...,ux] u € U without power constraints is convex.

Having formalized our requirement we begin by analyzing the
concavity properties of functions of SINR for linear interference
functions in Section 3.1.

3.1. Analysis of Concavity Properties of Resource Allocation
Problems — Linear Interference Functions

Linear interference functions are the simplest type of interference
functions and they are frequently encountered in communication
systems. Hence, expecting the supportable QoS region to be convex
for all linear interference functions, is a very natural requirement for
communication systems. We shall present an impossibility result
(Theorem 1), which has implications on the concavity properties of
resource allocation strategies, aiming to maximizing functions of
SINR in interference coupled wireless systems. We briefly deviate
and look at the convex case, where we have a completely differ-
ent picture. In the convex case, we have to analyze the function
Zi(v(s)) /v (sk) — since the convex case is connected with “loss
minimization”. It can be observed, that ¢/(s) = e°, with u > 0
always leads to jointly convex behaviour with respect to s (for all
linear interference functions).

The feasible SINR region can also be defined as {v > 0 | p(v) <
1}, where p(v) := p(diag{~} Vies) is the spectral radius of the weighted
coupling matrix, where V' = [V, lT} and Ve is an irreducible matrix
containing the interference coupling coefficients, without the dependency on
noise.

2This is due to the fact that the spectral radius p(=y) is log—convex after a
change of variable v = e, where s € R *1 is the logarithmic SINR.
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Theorem 1. There exists no strictly monotonic increasing and twice
continuously differentiable transformation 1, such that for all linear
interference functions, the function V¥ (si)/Zr(¢(s)), forall k € K
is jointly concave with respect to s.

Proof. For the sake of obtaining a contradiction, assume that the
statement of the Theorem 1 is not true, i.e. there exists such a func-
tion. Choose Zx(p) = >_ ik P, and fix s;, for all j € KC\k.
Then the function 9 (sk)/ 3_ ¢\, v3%(85) is concave with respect
to sk, i.e. the transformation ¢ is itself concave.

Now, fix s1 (w.l.o.g) and consider the following expression
P(s1)/(s2), with s € S C R. This implies, that 1/ (s2)
is a concave function. Now, choose 351)789 € S, sél) #* séQ)
arbitrarily. We have, that z/)(sél)) # w(sél)). Take, s2(A) =
(1- )\)sgl) + )\59. Then, we have that

1 1 1

o =0 A)w(sg”) ’ Aw(s<§>>'

On the other hand, we have that (since v is concave) ¥ (s2(\)) >
(1- )\)w(sgl)) + )\d)(sg)). This give us the following expression:

3

1 1
<
P(s2(N) T (1= Ne(sP) + ap(s?)
1 1
< (1-=X) +A .
w(ss?) (s
The strict inequality above follows from the strict convexity of 1/x
and we have our required contradiction with (3). O

Remark 1. We have proved the statement of the Theorem 1, for the
case, when we can scale the noise. Similarly, we can easily prove
the Theorem for the noise free case. We shall now analyze the case,
when we have noise and we do not scale the noise. Consider the
function

¥(sk)

> jercnk Vi (85) + vp(r41y0?

As vk 4+1) — 0, we have that the function (4) tends to the noise
free case. However, we have already stated, that with the above proof
technique we can prove the Theorem for the noise free case. Further-
more, we know that the limit of a sequence of concave functions is
concave. Since, we have that the limit function here is not concave,
we can conclude that the individual sequences are not concave either.

“)

We have observed, that the concavity of g, e.g. g(z) = = is
not sufficient to ensure the joint concavity of g (v (sk)/Zx(1(s))).
k € K with respect to s for a certain transformation. Hence, we need
to restrict utility functions g, such that we can ensure joint concavity
of the desired function. The necessary condition, which ensures joint
concavity will be presented in Lemma 1 below.

Lemma 1. Let a strictly monotonic increasing and twice contin-
uously differentiable function ) satisfy requirement 1. Let g be
a monotonic increasing function. Let g(w(sk)/Ik (1/)(5))) for all
k € K be jointly concave with respect to s for a certain 1) and for
all linear interference functions I, . . . , Zx.. Then, g(e”) is convave.

Proof. Since requirement 1 is satisfied, from Theorem 1 in [6]
we have that 1 is log—convex. Choose x1,z2 € R arbitrarily.
Then, we have for z(\) = (1 — A)x1 + Axe, that ¥(z(N)) <

(1/1(351))17A (1/}(132)))\. Since g is monotonic increasing, we have

that g((z(N)) < g((¥(x1))' " (W(x2))"). Since g(v(x))

is concave, we have that (1 — N)g(¢(x1)) + Ag(¥(z2)) <
g(1/1(m1)17A1/1(a:2)A). Now, let y1,y2 € R be arbitrarily cho-
sen. We choose x1, 2 such that ¢ (xr) = eV, for k € {1, 2}. This
is possible due to our assumption on t. Let y(A) = (1—X\)y1 +Ay2,
then we have that (1 — X)g(e¥!) + Ag(e¥2) < g(e?™), ie. g(e¥)
is concave. O

We have observed that to ensure the joint concavity of the func-
tion g(t(sk)/Zr(1(s))) with respect to s, for all k& € K, con-
cavity of g(e”) is a necessary condition. Since, 0 > (g(e¥))” =
(g'(e¥)e¥) = g"(e¥)e®¥ + ¢'(e¥)e?. We have, that if g is strictly
monotonic increasing, then g(x) is also concave, i.e. the concav-
ity of the function g(e”) is a stronger requirement. To utilize this

requirement, we introduce the the family of functions £EConc below.

Definition 1. £Conc is the family of all strictly monotonic increas-
ing, continuous functions g, such that g(e”) is concave.

We have seen in Lemma 1, the existence of a function v such
that the function g (t(sk)/Zx(1(s))), for all k € K is jointly con-
cave with respect to s, for all functions g € £Conc. We shall now
show in Theorem 2, that the function ) = ¢1 exp(us), is up to two
constants ¢, p the unique transformation, which ensures the joint
concavity of g(v(sk)/Zx(¢(s))), for all linear interference func-
tions and for all utility functions g € EConc.

We briefly compare this situation with the convex case, i.e. min-
imizing the function g(Z(s)/v(sk)), where v is the exponential
function. For the case of linear interference functions and for all
strictly monotonic increasing, continuous and convex functions g,
we have that g(Z(s))/¢(sk) is jointly convex with respect to s. In
this case we do not require any further restrictions.

Theorem 2. For all linear interference functions 1., ...,7Tx and
for all g € EConc, the function g(v(sk)/Zx(v(s))) is jointly con-
cave with respect to s, if and only if (s) = ci1exp(us), with
ci, > 0.

Proof. “<=": This direction can be easily verified. Hence, we skip
the proof.

“=": Take g(z) = logz, then g(e”) is in the class EConc.
Now, take ¢g(sx) = log(sk), then g is in accordance with our
assumption, hence is concave. However, the function ¢ is also log—
convex and let s(A) = (1 — \)s1 + As2 and choose s1 = 0, s2 = 1,
then we have that

log¥(s(A)) = log(A) = (1 —A)loge(0) + Alog (1)
— togu(0) +3 (10 (53)) ©
i
Let 9(1)/4(0) = p, then we have that )(\) = 1(0)e*, where
w> 1. O

We now extend our insight obtained from Theorem 1 and the
Lemma 1, beyond linear interference functions.

3.2. Analysis of Concavity Properties of Resource Allocation
Problems — Beyond Linear Interference Functions

In this section, we shall analyze the concavity properties of resource
allocation problems for interference functions, beyond the class of
linear interference functions. An example of non-linear interference
functions is worst case interference: Zy (p) = maxc, cc, plog (ck),
for k£ € K. The parameter cj can represent some uncertainty, cho-
sen from a compact uncertainty set C,. Such worst case interfer-
ence functions are often used in the case of robust power control.
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We shall be particularly interested in investigating the following
problem: We would like to preserve the concavity of the function
g(z/}(sk)/Ik(w(s))), for all k € K for the “largest” class of in-
terference functions. Therefore, we shall check for the concavity of
the function Y7, o wrg (¥ (sk)/Zx(1(s))) for all weight vectors
w > 0, for all utility functions g € EConc for the largest possible
class of interference functions. Then, we have the following result.

Theorem 3. The function Y, o wig(V(sk) /T (¥ (s))) is jointly
concave with respect to s, for all weight vectors w > 0, for all
g € EConc, ifand only if Iy, . .., Ik are log—convex interference
functions.

Proof. “=": We choose the weight vectors as follows: w,(cn) =

11
{ 1 n
(K—1)n

W(sj) im RO P (sk)
(e = im0 ()

J kek

k ; j Taking the limit as n — oo, we have that

We achieve that g(e®* /Zj(e®)) := G(s) is jointly concave with re-
spect to s, for all g € £Conc. Since, the limit function of a sequence
of concave function is concave. Choose g(x) = log(x), then for
g € EConc we have that log Zy,(e®) = s + log G (s), i.e. Zi(e®)
is log—convex.

“«<=": If interference functions Zi,...,Zx are log—convex,
then for sV, s arbitrarily chosen and s()) := (1—X)s(V +As?),
we have that

Ik(es(/\)) (Ik(es(l)))l—)\ (Ik(es(z))))\
1) (2)

eSk (A) eSk

) e 1-X A
Le.Ik(BS(A)) > (Ik(€8<1))) (Ik(es(Z))) .

IN

(
Sk

Then, for g € EConc fixed, we have that

JeY e O

ek 1-x, e’k A
g m - g<(Ik es(l))) (Ik(es(z))) )
st e
e’k e’k
1- L _fF )\
> A)g(Ik(esm)) +>\g(Ik(eS(2))>(6)

Inequality in (6) is obtained, since g(e”) is concave. Hence, we have
that g(e** /I (e®)) is jointly concave with respect to s, for all k €
K. Hence, we have that Y, - wig(¥(sk)/Zx(1(s))) is jointly
concave for all weight vectors w > 0 and for all g € EConc. O

We contrast the result obtained from Theorem 3 to the con-
vex case. In the convex case, i.e. minimization of the func-
tion Y, cx wig(Zu(¥(s))/1(sk)), where g is a strictly mono-
tonic increasing, continuous and convex function — it can be ob-
served that with log—convex interference functions (have been
discussed in [7]) and with 1) as the exponential transformation,
> wer wrd (T (¥(s)) /1(sk)) is jointly convex with respect to .

4. DISCUSSION

Many resource allocations problems encountered in wireless sys-
tems have objective functions, which are functions of SINR, e.g. rate
maximization. For all non—orthogonal systems, i.e. all non—trivial
interference functions, these objective functions are never jointly
concave in the power domain. Our paper has explored the possi-
bility of obtaining a suitable transformation, such that the resulting
resource allocation problem is jointly concave. Our paper proves,
that there exists no transformation, which ensures joint concavity, for

3005

all functions of SINR, for all linear interference functions. Hence,
we require additional restrictions to ensure concavity of the desired
functions. The paper has quantified this requirement and identified
the largest class of utility functions EConc, which are a function of
SINR in the s—domain and always jointly concave for linear interfer-
ence functions. Furthermore, it is shown that the family of exponen-
tial functions is the unique family of functions, such that a relevant
and frequently encountered function in interference coupled wire-
less systems is jointly concave for all linear interference functions
and for all utility functions in the class EConc. We have shown that
the largest class of interference functions, which ensures concav-
ity for resource allocation strategies are the log—convex interference
functions.

5. APPENDIX: INTERFERENCE FUNCTIONS

Definition 2. Interference functions: We say that 7 : ]Rf o Ry
is an interference function if the following axioms are fulfilled:

Al conditional positivity Z(p) > 0ifp > 0
A2 scale invariance Z(ap) = oZ(p), Vo € Ry
A3 monotonicity Z(p) > Z(p) if p > p

A4 strict monotonicity Z(p) > Z(p) if p > p,

BK+1 > BK+1'

Note that we require that Z(p) is strictly monotone with re-
spect to the last component Py &8 I(p) = vTp + o2, where

v € Rff is a vector of interference coupling coefficients. The ax-
iomatic framework A1-A4 is connected with the framework of stan-
dard interference functions [1]. The details about the relationship
between the model A1-A4 and Yates’ standard interference func-
tions were discussed in [3]. We note that the results of this paper are
also applicable to standard interference functions.

6. REFERENCES

[1] R.D. Yates, “A Framework for Uplink Power Control in Cellular
Radio Systems,” IEEE Journal on Selected Areas in Communi-
cation, vol. 13, no. 7, 1995.

[2] C. Huang and R. Yates, “Rate of Convergence for Mini-
mum Power Assignment Algorithms in Cellular Radio Sys-
tems,” Baltzer/ACM Wireless Networks, vol. 4, pp. 223-231,
1998.

[3] Martin Schubert and Holger Boche, QoS-Based Resource Al-
location and Transceiver Optimization, vol. 2, now Publishers
Inc., Boston-Delft, 2006.

[4] D. Hammarwall, M. Bengtsson, and B. Ottersten, “On Down-
link Beamforming with Indefinite Shaping Constraints,” /EEE
Transactions on Signal Processing, vol. 54, pp. 3566-3580,
September 2006.

[5] Holger Boche and Siddharth Naik, “Impact of Interference
Coupling — Loss of Convexity,” in IEEE Globecom, Honolulu,
Hawaii, USA, December 2009.

[6] Slavomir Stanczak and Holger Boche, “On the Convexity of
Feasible QoS Regions,” IEEE Transactions on Information The-
ory, vol. 53, no. 2, pp. 779-783, February 2007.

[7] Holger Boche and Martin Schubert, “Complete Characteriza-
tion of the Pareto Boundary of Interference Coupled Wireless
Systems with Power Constraints - the Log—Convex Case,” in
ICASSP, Taipeh, Taiwan, April 2009.



