
MAXIMIZING THE LIFETIME OF CLUSTERS WITH SLEPIAN-WOLF CODI NG

Tianqi Wang, Wendi Heinzelman, Alireza Seyedi, and Azadeh Vosoughi

Electrical and Computer Engineering Department, University of Rochester

ABSTRACT
In this paper, we propose an iteration-free algorithm to
find the optimal configuration, including transmit power and
source coding rates, to maximize the lifetime of a cluster
utilizing Slepian-Wolf source coding of data sent to a fusion
center. Exact closed form solutions are derived when the
fusion center is not energy constrained. When the fusion
center is energy constrained, a near optimum solution is
provided. Numerical results demonstrating the performance
of the proposed algorithms are also provided.

Index Terms— Distributed source coding, Wireless sensor
networks, Energy efficiency, Lifetime

I. INTRODUCTION

In general, there are two ways to reduce energy consump-
tion in wireless sensor networks (WSNs): efficient commu-
nication and data compression. Among the data compression
schemes, distributed source coding (DSC) in particular has
great potential in WSNs [1]-[3]. DSC exploits the spatial
correlation commonly found in sensed signals. With only the
knowledge of the spatial correlation between their signals,
the sensor nodes can compress their data using DSC without
communicating each other.

Slepian-Wolf coding, which is concerned with lossless
DSC of two correlated discrete sources, has recently been
utilized to address the energy efficient gathering of correlated
data in WSNs using mathematical optimization techniques
[2][4][5]. Researchers have abstracted the wireless mediaas
a graph with fixed cost per information bit, and then jointly
optimized the data gathering tree and the rate allocation
across the source nodes. In practice, however, different
communication constraints (e.g., network topology, energy
distribution) can significantly alter the communication cost
per information bit. Consequently, when considering mini-
mization of consumed energy, it is essential that the commu-
nication techniques are considered in conjunction with the
compression techniques.

In this paper, we propose an iteration-free solution to max-
imize the amount of data gathered during the cluster lifetime
with Slepian-Wolf coding. The optimization is conducted on
both the source coding and the communication sides. The
closed-form solutions for joint optimal transmit powers and
Slepian-Wolf coding rates are provided.
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Fig. 1. The 2-node Slepian-Wolf coding scheme

II. PROBLEM DEFINITION

Fig. 1 shows a typical Slepian-Wolf coding scheme with
2 sensor nodes that send data to a fusion center. During the
lifetime of this cluster, each sensor sensesS samples. The
lifetime of the cluster is defined as the time duration elapsed
from the beginning to the time when the fusion center or both
sensor nodes die.

We denote the source coding rate at nodei with Ri. The
Slepian-Wolf theorem states that ifR1 ≥ H(X1|X2), R2 ≥
H(X2|X1), R1 + R2 ≥ H(X1, X2), X1 andX2 are recon-
structible perfectly at the fusion center. HereH(·) represents
the entropy function, andXi is the source random variable
(sample) sensed at nodei [6].

Assume that sensor nodei can transmit for time duration
Ti, and it transmitsSRi data bits to the fusion center. Since
both sensors observe the same number of samples, we have

BTi log(1 +
Pi

dn
i PN

) ≥ SRi, (1)

whereB is the bandwidth,Pi is the transmit power of node
i, di is the transmission distance from nodei to the fusion
center,n is the path loss exponent andPN is the additive
white gaussian noise (AWGN) power. The inequality of
the above equation comes from Shannon’s channel capacity
theorem [6]. Therefore, the transmit power of nodei is
bounded by

Pi ≥ (2
SRi

BTi − 1)dn
i PN . (2)

That is, the lower bound on the transmit power of nodei is
determined by its time durationTi andSRi.

The energy constraints at the sensors areTi(Pi +PCT ) ≤
Ei, where Ei denotes the residual energy at nodei and
PCT is the circuit power consumption at the sensor nodes.
To facilitate our analysis, we utilize (2) to relax the energy



constraints. That is, we assume the lower bounds on transmit
powers are achievable. Therefore, the sensor nodes’ energy

constraints becomeTi[(2
SRi

BTi − 1)dn
i PN + PCT ] ≤ Ei. The

energy constraint at the fusion center isPCR(T1+T2) ≤ E0,
whereE0 is the energy available at the fusion center.PCR

is the circuit power consumption at the fusion center and
represents the power consumption for receiving data.

Under the energy and Slepian-Wolf coding constraints,
the maximization of the total gathered samples during the
lifetime of a cluster can be modeled as

min −S
s.t. C0 : Ti > 0, S > 0,

C1 : PCR(T1 + T2) ≤ E0,

C2 : Ti[(2
SRi

BTi − 1)dn
i PN + PCT ] ≤ Ei,

C3 : R1 ≥ H(X1|X2),
C4 : R2 ≥ H(X2|X1),
C5 : R1 + R2 ≥ H(X1, X2),

(3)

where C1 and C2 are energy constraints at the fusion
center and sensor nodes, respectively, andC3, C4 and C5

are Slepian-Wolf rate constraints. Our goal is, for a given
residual energy and communication environment, to find the
optimum transmission timeTi, coding ratesRi, and transmit
powersPi that maximizeS.

III. MAXIMIZING LIFETIME WITHOUT ENERGY
CONSTRAINT AT THE FUSION CENTER

The number of samplesS is a monotonically decreasing
function of R1 and R2. Therefore,R∗

1 and R∗

2 should lie
on the boundaryR1 + R2 = H(X1, X2). Thus, we always
haveR∗

1 + R∗

2 = H(X1, X2). This observation implies that
constraintC5 is always active. When there is no energy
constraint at the fusion center, the sensor nodes are then free
to choose the most energy-efficient transmission method by
only considering constraintsC2 − C5. Let us define

D∗

i = max
{

Ti log2(1 + Ei−PCT Ti

Tidn

i
PN

)
}

. (4)

Eq. (4) represents the unconstrained maximum informa-
tion bits that nodei can send, given that both sensors use
up their energy.

Proposition 1. Without loss of generality, let us assume
D1∗ is acheivable, then

R∗

1 = max
{

H(X1|X2),
H(X1,X2)
1+D∗

2/D∗

1

}

,

R∗

2 = H(X1, X2) − max
{

H(X1|X2),
H(X1,X2)
1+D∗

2/D∗

1

}

,

T ∗

1 = E1
ln 2(PCT −dn

1
PN )

W

 

ln 2
2dn

1 PN

(PCT −dn
1 PN )

!+PCT −dn

1 PN

,

T ∗

2 = arg
{

T2 log2(1 + E2−PCT T2

T2dn

2 PN
) = D∗

1
R∗

2

R∗

1

}

,

(5)
whereW (·) is the Lambert function.

Proof: Assume that node 1 sendŝD1 = SR∗

1 bits, and
node 2 sendŝD2 = SR∗

2 bits. Then we have

D̂1 + D̂2 = S(R∗

1 + R∗

2)
a

==⇒ S = (D̂1 + D̂2)/H(X1, X2),

b
==⇒ S =

D̂1(1+
R

∗

2
R∗

1
)

H(X1,X2) =
D̂2(1+

R
∗

1
R∗

2
)

H(X1,X2)
,

(6)

Step(a) is from the fact thatR∗

1 + R∗

2 = H(X1, X2). Step
(b) is from the fact that̂D1/D̂2 = R∗

1/R∗

2. Step(a) implies,
in the case where there is no fusion center energy constraint,
we need to maximizêD1 + D̂2, in order to maximize the
number of gathered samples. Since there is no constraint
from the fusion center side, at least one ofD̂1 andD̂2 should
be the unconstrained maximum value from (4). Without loss
of generality, we assumêD1 = D∗

1 andD̂2 ≤ D∗

2 .
When D̂1 = D∗

1 and D̂2 ≤ D∗

2 , from step(b), we have
S = D∗

1(1+
R∗

2

R∗

1
)/H(X1, X2). To maximizeS, R∗

2/R∗

1 needs
to be the largest possible value. That isR∗

1 has to be the
smallest feasible value andR∗

2 is the largest feasible value.
We have

D∗

1
R∗

2

R∗

1
≤ D∗

2 ==⇒
H(X1,X2)−R∗

1

R∗

1
≤

D∗

2

D∗

1
,

==⇒ R∗

1 ≥ H(X1,X2)
1+D∗

2/D∗

1
.

(7)

Also considering the constraintR∗

1 ≥ H(X1|X2), we

have R∗

1 = max
{

H(X1|X2),
H(X1,X2)
1+D∗

2/D∗

1

}

, and R∗

2 =

H(X1, X2) − R∗

1.
When node 1 sendsD∗

1 , the optimalT ∗

1 can be found from
(4). The corresponding transmit time durationT ∗

2 , however,
is not unique. One possible analytical solution ofT ∗

2 is

T ∗

2 = arg

{

T2 log2(1 +
E2 − PCT T2

T2dn
2 PN

) − D∗

1

R∗

2

R∗

1

= 0

}

.�

Proposition 1 gives the exact optimal solution of
T1, T2, R1, and R2 when there is no energy constraint at
the fusion center. The transmit powers can be obtained by
assuming both sensor nodes use up their energy. Since the
optimal solution in this case is not unique, this assumption
does not affect the optimality of the solution provided by
proposition 1.

IV. MAXIMIZING LIFETIME WITH ENERGY
CONSTRAINT AT THE FUSION CENTER

When the fusion center is deployed in the field with
limited energy supply, based on the amount of available
energy at the fusion center, there are two possibilities.

If the residual energy at the fusion center is larger than
the critical valueÊ0 = PCR(T ∗

1 + T ∗

2 ), whereT ∗

1 and T ∗

2

are given by (5), then this scenario is equivalent to the case
when there is no energy constraint at the fusion center, as
considered in Section III.

On the other hand, ifE0 < Ê0, the total transmission
time duration of the sensor nodes is limited by the fusion
center energy constraint. Due to the limited transmission
time budget, the sensor nodes have to send their data in



a non-optimal way. As the available energy at the fusion
center increases, thereby the total transmission time budget
increases, the sensor nodes will be able to choose a more
efficient transmission method. Correspondingly, the gathered
data at the fusion center will increase. In this section, we
focus on the optimization of a cluster where the fusion center
energy constraint is the limiting factor of the cluster, or a
fusion-center-limited cluster.

Given a limited transmission time budget, to send as much
data as possible, the sensor nodes will use as much transmit
power as possible. Therefore, both sensor nodes and the
fusion center will use up their energy. This observation leads
us to the following propositions:

Proposition 2. In fusion-center-limited clusters, we have
1) If E1

dn

1
> E2

dn

2
, then R∗

1 = H(X1), and R∗

2 =

H(X2|X1).

2) If E1

dn

1
< E2

dn

2
,thenR∗

1 = H(X1|X2), andR∗

2 = H(X2).

3) If E1

dn

1
= E2

dn

2
, R∗

1 and R∗

2 can be any points on
the line segmentR1 + R2 = H(X1, X2), R1 >
H(X1|X2), R2 > H(X2|X1).

Proof: Since the fusion center is the limiting factor, the
fusion center and both sensor nodes should use up their
energy. Therefore, both the fusion center and the sensor
nodes’ energy constraints are active:

PCR(T1 + T2) = E0, (8)

Ti[(2
SRi

BTi − 1)dn
i PN + PCT ] = Ei. (9)

From (9), we have

log2

(

Ei

Ti
−PCT

dn

i
PN

+ 1

)

= SRi

BTi
,

a
==⇒ Ti log2(

Ei

Tidn

i
PN

) ≈ SRi

B ,

==⇒ Ti log2(
Ei

dn

i
PN

) − Ti log2(Ti) ≈
SRi

B ,
b

==⇒ Ti ≈
SRi/B

log2(
Ei

dn
i

PN
)+ 6

ln 2

,

(10)

where step(a) assumes that the signal to noise ratio (SNR)
is much greater than 1, andEi ≫ PCT . Step(b) employs
the approximationTi log2(Ti) ≈ −Ti

6
ln 2 , which becomes

accurate whenTi → 0. DefineUi = log2(
Ei

dn

i
PN

)+ 6
ln 2 , then

we haveTi = SRi

BUi
. Correspondingly, we have

T1 + T2 =
S

B
(
R1

U1
+

R2

U2
), (11)

T1

T2
=

R1U2

R2U1
. (12)

The fusion center energy constraint implies

PCR(T1 + T2) = E0. (13)

Solving equations (11) and (13) forS, we have

S =
BE0

PCR

(

R1

U1
+

R2

U2

)

−1

. (14)

Maximizing (14) under the constraintR1 + R2 =
H(X1, X2), we directly have the following results: when
U1 > U2, then R∗

1 = H(X1), and R∗

2 = H(X2|X1);
whenU1 < U2, thenR∗

1 = H(X1|X2), andR∗

2 = H(X2);
when U1 = U2, R∗

1 and R∗

2 can be any points on the line
segmentR1 + R2 = H(X1, X2), R1 ≥ H(X1|X2), R2 ≥
H(X2|X1). �

Proposition 3. In fusion-center-limited clusters, the
closed-form near-optimal transmit time durations are:

T ∗

1 = E0

PCR

R∗

1U2

R∗

1U2+R∗

2U1
,

T ∗

2 = E0

PCR

R∗

2U1

R∗

2U1+R∗

1U2
,

(15)

whereR∗

1 andR∗

2 are determined from proposition 2.
Proof: By solving equations (12) and (13) forT1 andT2,

we directly have proposition 3.�

V. NUMERICAL RESULTS

We assume that two sensor nodes are uniformly placed
within a disk, with a radius of 100m, centered at the fusion
center. The path loss exponent isn = 4. Also, we set
H(X1) = H(X2) = 1 and H(X1|X2) = H(X2|X1) = h.
We compare the following cases: (1)R1 = H(X1), R2 =
H(X2) (No Slepian-Wolf coding), optimizedTi; (2) R1 =
H(X1|X2), R2 = H(X2), optimizedTi; (3) R1 = R2 =
H(X1, X2)/2, optimizedTi; (4) Jointly optimizedTi and
Ri (analytical results P.1, P.2 and P.3.); (5) Jointly optimized
Ti andRi (numerical).
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Fig. 2. Comparison of the performance in clusters with suffi-
cient energy at the fusion center as a function of conditional
entropy.

First let us consider the case where the fusion center is not
the limiting factor. We fix the sensor nodes’ residual energy
E1 = E2 = 0.1 J, and the fusion center residual energy
E0 = 100 J. In Fig. 2, we compare the average maximum
number of samples with various conditional entropies in
the above cases. Case 1, where no Slepian-Wolf coding



is applied, performs the worst. Case 3 outperforms case 2
because the evenly distributed burden in case 3 avoids the
possible early drain of energy in case 2 where there is always
one fixed node sending more data than the other. However,
the performance gap between cases 1, 2, and 3 diminishes
ash increases, since ash increases, the difference between
H(X1), H(X2), H(X1|X2), H(X2|X1) and H(X1, X2)/2
becomes smaller.

The numerical optimization ofT1, T2, R1, and R2 pro-
vides the best performance. However, an iterative numerical
optimization in theR4 domain is exceedingly complicated in
most WSN applications, where energy is a limited resource.
Moreover, when the distribution of the source and/or the
profile of the channel are time-varying, periodic updates on
T1, T2, R1, and R2 make iterative numerical optimizations
even more costly. The analytical results in (5) allow us to
jointly optimize T1, T2, R1 and R2 at a considerably lower
computational cost.
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Fig. 3. Comparison of the performance in fusion-center-
limited clusters.

To look at the fusion-center-limited case, we assume that
the sensor nodes’ residual energy areE1 = E2 = 100 J,
and the fusion center residual energyE0 = 0.1 J. Fig.
3 shows the comparison of the performance of the five
cases. The analytical results provide a performance that is
almost as good as the numerical optimizations, and there is
a performance gain over the fixed source coding rate cases
(cases 1-3), especially at smallh where X1 and X2 are
highly correlated. Our analytical approximations providea
near-optimal performance in a fusion-center-limited cluster.

Comparing Fig. 3 and Fig. 2, the optimization ofR1 and
R2 in in clusters with no fusion center energy constraint
is more important than in fusion-center-limited clusters.As
shown in Fig. 2, in clusters with no fusion center energy con-
straint, the analytical optimization provides a gain of as much
as 101% on the gathered data over fixed-rate Slepian-Wolf
coding cases (cases 2 and 3); while in fusion-center-limited

clusters, as shown in Fig. 3 the most gain that the analytical
optimization can achieve is merely 8%. This is because, in
clusters with no fusion center energy constraint, the total
available transmission time duration is determined by the
sensor nodes, and an inefficient Slepian-Wolf coding scheme
would accelerate the drain of energy at the sensor nodes
and thereby reduce the total available transmission time
duration. However, in fusion-center-limited clusters, the total
available transmission time duration is mainly determined
by the fusion center energy storage, and it is not affected
by the adopted Slepian-Wolf coding scheme as much as in
clusters with no fusion center energy constraint. Thus, when
the sensor nodes’ energy is limited while the fusion center
energy storage is abundant, an optimized distributed source
coding scheme becomes crucial.

VI. CONCLUSIONS

In this paper, we provide analytical results to maximize
the lifetime of a 2-source Slepian-Wolf coding cluster with
energy constraints and Slepian-Wolf coding constraints. The
optimization parameters are source coding rates and transmit
durations of both source nodes. The optimal transmit powers
of source nodes are also found. For the case where there is no
active energy constraint at the fusion center, we have found
an exact optimal solution. For the case where there is an
energy constraint at the fusion center, near-optimal solutions
are obtained. The optimization in the case where there is
no energy constraint at the fusion center results in a very
significant gain in lifetime.
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