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ABSTRACT iteration consists of solving a generalized trust regiob-su
roblem (GTRS) by using TOA based range measurements.
ese algorithms might fail to find a global solution and have
her slow convergence rate or high computational cost. In
2], the ML problem based on TOA range measurements was
eformulated and relaxed to construct a suboptimal but sim-
ler optimization problem. The resultant relaxed ML prable
is a semidefinite program (SDP), and therefore convex. How-

This paper addresses the problem of locating a single sour
from noisy range measurements in wireless sensor networkgn
An approximate solution to the maximum likelihood location
estimation problem is proposed, by redefining the proble
in the complex plane and relaxing the minimization proble

into semidefinite programming form. Existing methods solv

the source localization problem either by minimizing theever, as discussed in [3], the optimal solution of this rethx

maximum likelihood function iteratively or exploiting agh SDP does not always satisfy the near-rank-1 constraints of

semidefinite programming relaxations. In addition, USIngacg:eptable solutions to the source localization problem.
squared range measurements, exact and approximate leas

squares solutions can be calculated. Our relaxation faceou AN alternative approach is to define the source localiza-
localization in the complex plane (SLCP) is motivated by thefion Problem as a least squares (LS) problem using squared
near-convexity of the objective function and constrainthie ~ '2n9es (SR) or SR difference TOA based measurements. De-
complex formulation of the original (non-relaxed) problem SPite its nonconvexity, the SR-LS problem can be solved-glob
Simulation results indicate that the SLCP algorithm outper@!!ly and efficiently by resorting to GTRS [3]. The SR-LS
forms existing methods in terms of accuracy, particulanly i approaches are computationally simpler than iterative-min

the presence of outliers and when the number of anchors (ﬁization algorithms but they provide less accurate safstio
larger than three. than those provided by ML approaches [3], because they are

) o . suboptimal in the ML sense. Besides, SR-LS solutions are
Index Terms— Single source localization, maximum known to undergo significant degradation in the presence of

likelihood estimation, nonconvex and nonsmooth minimizaoutliers [7], which commonly affect practical range measur
tion, semidefinite programming. ment systems.

The SLCP and techniques described up to this point are
1. INTRODUCTION centralized methods. However, it can be interesting toesolv
the source localization problem in a distributed manner in
The problem of estimating the position of a source using onlyvireless sensor networks. In [5], the authors proposed-a dis
the distances to a set of points with known coordinatesddall tributed incremental gradient method to solve the ML prob-
anchors) appears in many engineering and scientific applicdm using RSS measurements. Nevertheless, like most it-
tions. This problem has been solved by different schemes argfative methods applied to nonconvex problems, it may get
using various types of range-like measurements such as tinig@pped in local minima. The problem can also be formulated
of arrival (TOA) or received signal strength (RSS) [1, 2, 3, 4 as a convex feasibility problem and solved via distributes p
5, 6]. jection onto convex sets (POCS) using RSS measurements
Maximum likelihood (ML) based solutions are of partic- [6]. POCS converges to a limit point or to a limit cycle in
ular interest due to their asymptotically optimal perfonoe.  the vicinity of the true source position.
However, the ML estimator requires the minimization of a  In this paper, we consider centralized ML source local-
nonconvex and nonsmooth cost function. One approach faration because of its asymptotically optimal charactiess
finding a local solution of the ML problem is through the useand superiority compared to SR-LS in the presence of out-
of iterative minimization techniques [1]. In [1], the autBo liers [7]. Note that our ML function is built under the as-
exploited the special structure of the cost function towdes  sumption of Gaussian noise, which leads to a LS estimator
fixed-point iterative scheme and another method where eagiroblem. We reformulate the ML problem as a two stage op-
_ _ _ timization problem, given that the problem has two sets of
ing v;[‘,;spﬁvggggi,io";gﬁ"fyu,f;gpgg‘fgctbéﬁfg,E”E‘jg’}‘ggo',iﬁﬂig,';'g{;g?;?,:d{;‘”d variables. In the first step, one of the variable sets is fixetl a
SFRH/BD/44771/2008. the unconstrained optimization part of the problem is sblve




with respect to the other variable set. In the second step, colf we fix y;, the solution of (2) with respect tois an uncon-
straints are described in the complex plane and the optimizatrained optimization problem whose solution is obtaingd b
tion problem is relaxed to an SDP. This relaxation was foundnvoking the optimality conditions

to be more accurate than others which have been previously m

published [2]. That behavior is heuristically interpreted of (x) _ Sy =0=a" == Y1+ .+ Ym
Section 2 based on the convexity of the cost function and the 9z %) = Y= m ‘
near-convexity of the constraint set. The accuracy of SLCP
makes it a convenient initialization method for iteratiee r Now, (2) becomes a constrained variance minimization prob-
finement methods, which therefore require fewer iterattons lem

i=1

. . . inimi m m 2
converge and/or are less likely to be trapped in undesirable minimize 377, (|7 — il
local extrema of the ML cost function. Yi ()
The organization of this paper is as follows. In Section 2, subjectto |ly; — ai| = 7i.

ML location estimation is formulated and the SLCP algorithmGeometrically, the constraints of (3) define circle equaio
is introduced. In Section 3, simulation results for SLCP arewvhich can be compactly described in the complex plane as
presented and its performance is benchmarked against other

. . . . inimi m = 112
methods. Finally, conclusions are drawn in Section 4. Vec- minimize 3.7, (|7 — il
tors and matrices are denoted by boldface lowercase and up- Yi i ” (4)
percase letters, respectively. Thth component of a vector subjectto y; = a; +r;e’?i.

ais written asa;. The superscript (H) denotes the transpose
(Hermitian) of the given real (complex) vector or matrix.-Be
low, |, is them x m identity matrix and thd.,,, is the vector
of m ones. For symmetric matriX, X > 0 means thaX is

positive semidefinite. minimize (a + RO)"1I(a + RO)
0

Invoking the centering operat®r = (1,,, — =1,,17,), which
subtracts the mean of a vector from each of its components,
(4) is rewritten in matrix form as

®)

2. PROBLEM FORMULATION subject to 10;] =1,

— oo T m — i oo
Let z € R? be the unknown source position; € R? be whereaf [ @ am ] GC ’Ii diag([ r1 fm ) e
known sensor positions (anchors) foe= 1,..,m, andr; = R™ " and@ = [ ¢/%1-..¢/%n |7 € C™. Expanding the
|z — as]| + w; be the measured range between;thie anchor o_bjectlve function in (5) and deleting the constant terms
and the source, contaminated by zero mean Gaussian noigé€lds
T . 5 e ,
Z&J}I\I/g}grintincea . The ML source localization problem is minimize 2 Re(a”'TIRO) — %HHleernRH

0 (6)

minimize f(x) = ZZL(H?C —aill —ri)?. (1) sublectto =1

r DefineR”1 = r anda”TIR = c*. Thus,

The objective function in (1) is nonconvex and nonsmooth. If minimize 2Re(c?6) — L6%rr’0
we examine the termge — a;|| andr;, the difference between (7] ©)
the true range and observed range is actually equivalehéto t subject to |6;| = 1.
distance between the source position and the circle with cen o ) - "
ter a; and radiusy, i.e., ||z — a;|| — rs| = ||z — yi||, where ~ The value of Re™ ) is in the interval —|c™ 6], |c™ 6], and
y; is located in the intersection of the line connectingand ~ for any & we can always find an auxiliary anglesuch that
x with the circle{z : ||z — ;|| = r;} (Fig. 1). the rotated vectof, = Oe?7 satisfies R&c'” 0y) = —|c' 6|

without affecting the other term in the cost function or the
constraints. With this modification, the optimization prob
lem (7) becomes easier to handle.

Iz - aill - 7: . minimize —2|c7 0| — %gHrrTO
0 8
subject to 0] = 1.

lle - wll

Before relaxing (8) we further investigate the geometragpr
erties of this formulation by introducing new variabkeand
v and writing the optimization problem as

Fig. 1. Geometric interpretation of terms in ML cost function.

An equivalent formulation is therefore,

maximize 2Vu+ v
minimize > [lz — yil|? Y Y
z, Y (2) subjectto {30 :10;| = 1;u = 8% cc0,v = 67 rrT0}.

subjectto |[|y; —aif = ;. (9)



a quadratic function subject to a single quadratic constrai
which is efficiently solved by GTRS. Despite a fundamental
mismatch with the likelihood function, that method is fre-
quently more accurate than the ML relaxation of [2], which
may fail to find a valid solution satisfying rank-1 consttain
In this section, however, we will see that as a relaxed ML
method, SLCP outperforms SR-LS for more than three an-
' ] chors. The difference in performance is more significant in
We also use SLCP as initialization of iterative methods,
in which case its impact on the number of required iterations
for convergence is of concern as well. We have used the
simple fixed point (SFP) method described in [1]. SFP is
derived by using optimality conditions and mimicking the
Weiszfeld method which is used to solve the localization
problem to minimize the sum of euclidean distances. We
used ||V f(z*)| < 1077 as a stopping criterion for SFP,
a\%erer(xk) is the gradient of the objective function in (1)

]

Fig. 2. The constraint s€t., v) for randomly generatef that
satisfiegd;| = 1 for three and five anchors.

The objective function in (9) is concave with respect:tand
v. Fig. 2 depicts points in the constraint et v) for ran-
domly generated that satisfiegf;] = 1 andm = 3 or 5
anchors. As seen from the figure, these constraint sets
almost convexsuch that (9) describes aalfmost convexop- at k-th iteration

timization problem. To motivate our proposed relaxation WeExampIe 1In tﬁis example, SLCP is compared with SR-LS
hypothesize that dropping a subset of constraints which dqj— j '

strov convexity should not severelv disrunt the solutiothef sing five anchors. We performed 1000 Monte Carlo runs
y convexity should not severely disrupt the soluti where in each run the anchor locationsand the source:
problem. To this end (8) is expanded and rewritten as

were randomly generated from a uniform distribution over
the squarg—10,10] x [-10,10]. The observed ranges

are generated as described in Section 2, whetekes on
four different values: 110!, 1072, 10~2. Table 1 lists the
average squared position errdris— z||? over all realizations,
Following standard manipulations we introduce the newvari\éantefrgfeiiTgt?ssnt]g?kséc:jluig%glcgfi(i_L;S&%;%Eélﬁ%gﬁiit?_

— H i i ’

able® = 66 and an associated rank constraint, of SLCP. This example and Table 1 are provided for direct
comparison with Example 2 and Table 1 in [3], where SR-LS

maximize 2/tr(cc060) + Ltr(rr’ 66H)
7 (10)
subject to 16;] = 1.

maximize 2/tr(cc®) + Ltr(rr” ®)

& was shown to outperform other methods.
subject to %29 , (12) > SRS | SLCP
ranll<7¥I>_— 1 le-3| 3.22e-6| 1.72e-6
- le-2| 1.93e-4| 1.39%e-4
Finally, a relaxed SDP formulation is obtained by introchggi le-1] 2.24e-2)| 1.61e-2
the epigraph variableand dropping the rank constraint, 1 2.13 1.86
maximize t+ Ltr(rr” ®) Table 1. Mean squared position error of SR-LS and SLCP
B, " o
subjéct to d>0 (12) Example 2:To further investigate the accuracy of the meth-
P —1 ods, the performances of several algorithms (SR-LS, SLCP,
4CH&;C > 42 SFP initialized by SLCP, SFP initialized by SR-LS) are tdste

for five anchors with 10 different noise levetse [0.01, 0.1].
Remark that the solution of the optimization problem (12)The performance metric is root mean square error (RMSE),
is a positive semidefinite matrix, hopefully with near-1kan defined as\/% ZkK—l |z — &*||2, wherei* denotes an es-
Afterwards, the source coordinates are estimated by singulimated source position in thieth Monte Carlo run for the
value decomposition (SVD) cb [4]. specific noise realization. The number of Monte Carlo runs

is K = 200. Fig. 3a shows that plain SLCP has better accu-
3. SIMULATIONS AND COMPARISONS WITH THE racy than SR-LS, although the performance gap closes after

EXISTING METHODS iterative refinement by SFP. To compare the RMSE of the

algorithms in the presence of outliers, modified range mea-
In this section we will demonstrate the performance of thesurements are created accordingte= ||z — a;|| + w; + |€l,
SLCP algorithm in simulation and compare it with otherwhereec is a white Gaussian noise term with standard devi-
existing methods from [1, 3]. In [3], the authors consideration o,,uier € [0,1]. The disturbancée| only affects the
LS approaches for locating a source from SR measurementsieasured range between the second anchor and the source,
which is termed SR-LS. The problem is cast as minimizingvhereasw; with ¢ = 0.04 is present in all observations.




RMSE vs. o on distance measurements
0.35

Fig. 3b shows an increased RMSE gap between plain SR-L.
and SLCP. Regarding convergence speed in SFP refinemel

SR-LS
sLcP

0.3

the mean number of iterationsy, over all Monte Carlo
runs was calculated for initialization using SLCP or SR-LS.
Foro = 0.1 and no outliers, we hav®/’s cp+sep= 19 and
Nsr.Ls+sep = 35, whereas folo, 50 = 1 ando = 0.04
these becom&Vs cp+srp= 7 and Nsr. s+sep= 33. These
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Fig. 3. RMSE vs. disturbance power for five anchors. The
curves for SLCP, SR-LS+SFP and SLCP+SFP are nearl

overlapping in the two figures.

results show that plain SLCP has better accuracy than pla
SR-LS, while their computational times in our implementa
tion are similar. Besides, when the solution of SLCP is give
as an initialization to SFP, it significantly reduces the bem
of iterations compared with SR-LS initialization. Actugall

plain SLCP has very good accuracy in this example, and SF

refinement only provides marginal improvements.

The improvement of SLCP over SR-LS is not as signif-
icant for three anchors, because the set illustrated in Se
tion 2 more often becomes markedly nonconvex for som
noise/anchor realizations, and the SDP relaxation does n
yield a desirable nearly rank-1 solution. Extracting therse
location by SVD might then be inappropriate.

Example 3: This example demonstrates that, in addition to

increasing the convergence speed of SFP, SLCP initiadizati
also alleviates the problem of convergence to local extrem
of the ML cost function. The five-anchor setup is similar to
that of the previous example fer € [0.02,0.1] and no out-
liers, but the anchor positions are chosen such that the M

cost function has one local minimum in addition to the global
one. Fig. 4 shows that now SFP refinement does not close the

performance gap between SLCP and SR-LS initialization b
cause in the latter case the algorithm converges more aften
the undesirable solution, thus producing a larger RMSE.

2

SLCP+SFP
SR-LS+SFP

Fig. 4. RMSE vs. disturbance power for five anchors with one
local and one global minimum.

4. CONCLUSION

The nonconvex ML based source localization problem was
tackled by formulating it as an optimization problem in the
complex plane and then taking advantage of the nearly con-
vex nature of the resulting cost function and constraintset
obtain a SDP relaxation. This essentially involves drogin
rank constraint, which was found to have a negligible impact
on the accuracy of the solution in many scenarios. Simula-
tion results showed that SLCP provides very accurate esult
compared to other existing methods. Moreover, when used
for initialization of iterative refinement methods it prdeis a
good starting point that reduces both the number of required
iterations and the probability of convergence to localexia.
Future work will focus on finding a better rank-1 approxi-
mation than SVD to the matrix output of SLCP when very few
nchors are used. Formulating SLCP in higher dimensions is
Iso a topic of interest, e.g., for 3D source localization.
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