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ABSTRACT 
 
The visual information fidelity (VIF) index is an objective 
quality metric that gives very accurate image similarity 
scores, but at the cost of very high computational 
complexity. In this paper, a method is presented for 
calculating VIF in the discrete wavelet domain using the 
Haar wavelet. The proposed method exploits scalar 
Gaussian Scale Mixture (GSM) instead of vector GSM for 
calculating the prediction scores. The complexity of the 
proposed method is assessed for five different popular 
image sizes and compared to other methods based on a 
C/C++ implementation of the algorithms. Experimental 
results show that the proposed method can compute the 
visual quality score with less than 30% of the computational 
complexity of the well-known SSIM index, with greater 
accuracy than that achieved by the original VIF index 
method (at about 5% of its computational complexity). 
 

Index Terms— Information fidelity, image quality 
assessment, discrete wavelet transform 
 

1. INTRODUCTION1 
 
Generally speaking, the full-reference (FR) quality 
assessment of image signals involves two categories of 
approach: bottom-up and top-down [1]. In the bottom-up 
approaches, the perceptual quality scores are best estimated 
by quantifying the visibility of errors. These methods have 
several important limitations, however, outlined in [1]. In 
the top-down approaches, the whole human visual system 
(HVS) is considered as a black box, and the input/output 
relationship is of interest. 

The Structural SIMilarity (SSIM) index was the first 
method to be developed in the top-down category and was 
introduced in [2]. The basic form of SSIM is relatively 
simple, and, because of its simplicity, it has attracted a great 
deal of attention in recent years and been considered for a 
wide range of applications. In [3], an Information Fidelity 
Criterion (IFC) for image quality measurement is presented 
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which works based on natural scene statistics. In the IFC, 
the image source is modeled using Gaussian scale mixture 
(GSM), while the image distortion process is modeled as an 
error-prone communication channel. Another information-
theoretic quality metric is the Visual Information Fidelity 
(VIF) index [4] (shown in Fig. 1). The VIF index follows 
the same procedure as the IFC, except that in VIF both the 
image distortion process and the visual perception process 
are modeled as error-prone communication channels.  

 
Fig. 1. Block diagram of the VIF index [4] 

 
The VIF index is the most accurate image quality metric 

according to the performance evaluation of prominent image 
quality assessment algorithms performed in [5]. In spite of 
its high level of accuracy, this index has not been given as 
much consideration as the SSIM index in a variety of 
applications. This is probably because of its high 
computational complexity (6.5 times the computation time 
of the SSIM index according to [4]). Most of the complexity 
in the VIF index comes from over-complete steerable 
pyramid decomposition, in which the neighboring 
coefficients from the same subband are linearly correlated. 
Consequently, the vector GSM is applied for accurate 
quality prediction. 

In this paper, we propose an approach for calculating 
VIF in the discrete wavelet domain. The proposed approach 
is more accurate than the original VIF index, and yet is less 
complex than the VIF index and even the SSIM index. It 
applies real Cartesian-separable wavelets and uses scalar 
GSM instead of vector GSM in modeling the images for 
VIF computation. 

 
2. VISUAL INFORMATION FIDELITY 

COMPUTATION 
 

2.1. Scalar GSM-based VIF 
 
Scalar GSM has been described and applied in the 
computation of IFC [3]. We repeat that procedure here for 
VIF index calculation using scalar GSM. Considering Fig.1, 
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let CNൌሺC1,C2,…,CNሻ denote N elements from C, and let 
DN=ሺD1,D2,…,DNሻ be the corresponding N elements from D. 
C and D denote the RFs from the reference and distorted 
signals respectively (as in [3] the models correspond to one 
subband). C is a product of two stationary random fields 
(RFs) that are independent of each other: 
ܥ ൌ ሼC௜: ݅ א Iሽ ൌ ܵ. ܷ ൌ ሼS௜. U௜: ݅ א Iሽ                                  ሺ1ሻ 
where I denotes the set of spatial indices for the RF, S is an 
RF of positive scalars, and U is a Gaussian scalar RF with 
mean zero and variance ߪ௎

ଶ. The distortion model is a signal 
attenuation and additive Gaussian noise, defined as follows: 
ܦ ൌ ሼD௜: ݅ א Iሽ ൌ ܥܩ ൅ ܸ ൌ ሼ ௜݃C௜ ൅ V௜: ݅ א Iሽ                   ሺ2ሻ 
where G is a deterministic scalar attenuation field, and V is a 
stationary additive zero-mean Gaussian noise RF with 
variance ߪ௏

ଶ. The perceived signals in Fig. 1 are defined as 
follows (see [4]): 
ܧ ൌ ܥ ൅ ܨ   ,  ܰ ൌ ܦ ൅ ܰᇱ                                                      ሺ3ሻ 
where N and ܰᇱ represent stationary white Gaussian noise 
RFs with variance ߪே

ଶ. If we take the steps outlined in [4] for 
VIF index calculation considering scalar GSM, we obtain: 

;൫CNܫ ENหSN ൌ sN൯ ൌ ;൫CNܫ EN|sN൯
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                      ሺ4ሻ 

In the GSM model, the reference image coefficients are 
assumed to have zero mean.  So, for the scalar GSM model, 
estimates of s௜

ଶ can be obtained by localized sample variance 
estimation. The variance ߪ௎

ଶ can be assumed to be unity 
without loss of generality [3]. Thus, eq. (4) is simplified to 
eq. (5). 

;൫CNܫ EN|sN൯ ൌ
1
2 ෍ ଶ݃݋݈ ቆ1 ൅

C೔ߪ
ଶ

ேߪ
ଶ ቇ

N

௜ୀଵ

                                  ሺ5ሻ 

Similarly, we arrive at eq. (6): 
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The final VIF index is defined by eq. (7), as in [4] but 
considering a single subband: 

ܨܫܸ ൌ
;൫CNܫ FN|sN൯
;൫CNܫ EN|sN൯

                                                                 ሺ7ሻ 

 
2.2. Description of the proposed approach 
 
Let X and Y denote the reference and distorted images 
respectively. The procedure for calculating the proposed 
discrete wavelet-based VIF is described, and explained, in 
the following steps.  

Step 1. We perform one-level discrete wavelet 
decomposition on both the reference and the distorted 
images using Haar wavelet basis to obtain XA and YA. With 

one-level decomposition, the approximation subbands XA 
and YA are still large enough relative to the original images 
to provide accurate image statistics. Symmetric Haar filters 
have a generalized linear phase, so the perceptual image 
structures can be preserved. Moreover, the Haar wavelet 
lends itself to a fast implementation, which reduces the 
computational complexity of the algorithm. 

Step 2. We calculate the quality score between the 
approximation subbands XA and YA using eq. (7), and call it 
DWT_VIFA:  

஺ܨܫܸ_ܹܶܦ ൌ
∑ ଶ݃݋݈ ቆ1 ൅ ௜݃

ଶܠߪಲ,೔
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ଶ
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௜ୀଵ

                            ሺ8ሻ 

where N is the number of samples in the approximation 
subband, x஺,௜ is the ith image patch within the 
approximation subband XA, and ܠߪಲ,೔

ଶ  is the variance of x஺,௜. 
The noise variance ߪே

ଶ is set to 5 in our approach. The 
parameters ௜݃ and ߪ௏೔

ଶ  are estimated as described in [3], 
which results in eq. (9) and eq. (10). 

௜݃ ൌ
ಲ,೔ܡ,ಲ,೔ܠߪ

xಲ,೔ߪ
ଶ ൅ ߝ                                                                               ሺ9ሻ 

where ܠߪಲ,೔,yಲ,೔
 is the covariance between image patches x஺,௜ 

and y஺,௜, and ε is a very small constant to avoid instability 
when ߪxಲ,೔

ଶ  is zero. In our approach, ߝ ൌ 10ିଶ଴.  

௏೔ߪ
ଶ ൌ yಲ,೔ߪ

ଶ െ ௜݃ · ಲ,೔ܡ,xಲ,೔ߪ                                                        ሺ10ሻ 
All the statistics (the variance and covariance of image 

patches) are computed within a local Gaussian square 
window, which moves (pixel-by-pixel) over the entire 
approximation subbands XA and YA. As with the SSIM index 
[2], a Gaussian sliding window is defined, in this case 
W ൌ ሼݓ௞|݇ ൌ 1,2, ڮ , Mሽ, with a standard deviation of 1.5 
samples, normalized to unit sum. Because of the smaller 
resolution of the subbands in the wavelet domain, we can 
extract accurate local statistics with a small sliding window. 
We show in the next section that the DWT_VIFA can provide 
accurate scores with a window of 3×3 (M=9). A small 
window size reduces the number of computations required 
to obtain local statistics and consequently reduces the 
complexity of the algorithm. 

Step 3. In this step, an estimate of the image edge is 
formed for each image using an aggregate of detail 
subbands (eqs (11) and (12)). 
,ாሺ݉܆ ݊ሻ ൌ

ට0.45 · Xு
ଶ ሺ݉, ݊ሻ ൅ 0.45 · X௏

ଶ ሺ݉, ݊ሻ ൅ 0.1 · X஽
ଶ ሺ݉, ݊ሻ           (11) 

,ாሺ݉܇ ݊ሻ ൌ

ට0.45 · Yு
ଶ ሺ݉, ݊ሻ ൅ 0.45 · Y௏

ଶ ሺ݉, ݊ሻ ൅ 0.1 · Y஽
ଶ ሺ݉, ݊ሻ           (12) 



where Xா and Yா represent the edge maps of X and Y 
respectively; (m,n) shows the sample position within the 
wavelet subbands;  Xு, X௏, and X஽ denote horizontal, 
vertical, and diagonal detail subbands of image X; Yு, Y௏, 
and Y஽ are detail subbands of image Y.  

Step 4. The similarity between image edge aggregates 
Xா and Yா is calculated as in step 2, and called ܨܫܸ_ܹܶܦா. 

Step 5. Finally, the overall quality measure between 
images X and Y is obtained by linear combination of the 
approximation and edge similarity scores in steps 2 and 4: 
ܨܫܸ_ܹܶܦ ൌ ߙ · ஺ܨܫܸ_ܹܶܦ ൅ ሺ1 െ ሻߙ ·  ா    ሺ13ሻܨܫܸ_ܹܶܦ
0 ൏ ߙ ൑ 1 
where ܨܫܸ_ܹܶܦ gives the final similarity score of images 
in the range [0,1], and α is a constant. As the approximation 
subband contains main image contents, α should be close to 
one. We set α = 0.93 for our experiments. 
 

3. SIMULATION RESULTS AND ANALYSIS 
 
3.1. Verification of accuracy 
 
Evaluation of the performance of the proposed method is 
carried out on LIVE Image Quality Assessment Database 
Release 2 [6]. This database consists of 779 distorted images 
derived from 29 original color images using five types of 
distortion. Distortion types are JPEG compression, 
JPEG2000 compression, Gaussian white noise, Gaussian 
blurring, and the Rayleigh fast fading channel model. The 
realigned subjective quality data for the database are used in 
all experiments [6]. 

In this paper, three performance metrics are adopted to 
measure the performance of objective models. The first is 
the correlation coefficient (CC) between the Difference 
Mean Opinion Score (DMOS) and the objective model 
outputs after nonlinear regression. For the latter, we use the 
five-parameter logistical function defined in [5]. The second 
is the root mean square error (RMSE) between DMOS and 
the objective model outputs after nonlinear regression. The 
third is the Spearman rank order correlation coefficient 
(ROCC). 

In order to put the performance evaluation of our method 
in the proper context, we compared the proposed method 
with other quality metrics, including PSNR, the SSIM index 
[2], and the VIF index [4]. In the DWT_VIF simulation, we 
used the Haar wavelet and a Gaussian window size of 3×3. 
The DWT_VIF parameters were selected to minimize the 
complexity and RMSE as much as possible. The other 
metrics were implemented and simulated with the default 
parameters described in their reference papers.  

To better understand the effect of the discrete wavelet 
transform in quality assessment, we considered ܨܫܸ_ܹܶܦா 
and ܨܫܸ_ܹܶܦ஺ as separate objective quality assessment 
models. Table 1 lists performance metrics values for each of 
these models. The CC value for ܨܫܸ_ܹܶܦ஺ is 0.9649 which 
is higher than the CC value of the VIF index (0.9593) 

defined in [4]. As is clear from the results, ܨܫܸ_ܹܶܦ஺ is 
quite efficient. The reason is that the bulk of the useful 
image information is concentrated in the first-level 
approximation subband. It can be seen that the performance 
of ܨܫܸ_ܹܶܦா is relatively good and nearly the same as that 
of the SSIM index. This observation confirms the validity of 
the edge maps defined in eq. (11) and eq. (12). The values 
of the performance metrics of ܨܫܸ_ܹܶܦ are slightly better 
than those of ܨܫܸ_ܹܶܦ஺, which means that ܨܫܸ_ܹܶܦா is 
dominated by ܨܫܸ_ܹܶܦ஺ when the two are combined. This 
shows that we can calculate the similarity of images with 
very good precision just by considering their first-level 
approximation subband. It should be mentioned that, in our 
experiments, computing the final metric by combining the 
visual information of the subbands as defined in [4] instead 
of using eq. (13) does not improve the performance values 
of ܨܫܸ_ܹܶܦ஺. It actually reduces them to CC=0.9518, 
ROCC=0.9559, and RMSE=8.3830. Fig. 1 shows the scatter 
plots of DMOS versus DWT_VIF predictions for all the 
distorted images. It is evident that the DWT_VIF prediction 
is consistent with the subjective scores. 

 
Table 1. Performance comparison of image quality assessment 

models (all 779 distorted images included) 
Model CC ROCC RMSE 
PSNR  0.8701 0.8756 13.4685 

Mean SSIM  0.9041 0.9104 11.6736 
VIF 0.9593 0.9635 7.7122 

DWT_VIFE  0.9039 0.9161 11.6883 
DWT_VIFA  0.9649 0.9665 7.1763 
DWT_VIF  0.9651 0.9671 7.1561 

 

We also tested DWT_VIF with the previously defined 
parameters for other wavelet filters. We observed that the 
other wavelet bases were not as good as the Haar basis and 
reduced the performance of the metric. For example, 
Daubechies 9/7 wavelet results in CC=0.9470, 
ROCC=0.9455, and RMSE=8.7806 for DWT_VIFA. 
Although these values are lower than those for the VIF 
index, they are still quite acceptable, and higher than the 
SSIM performance metrics values. 
 
3.2. Verification of complexity 
 
In order to verify the computational complexity of the 
proposed method, the execution time of the algorithm based 
on the elapsed CPU time is measured. As mentioned in [4], 
the computation time of the VIF index proposed in [4] is 
much higher (by about 6.5x) than that of the SSIM index in 
[2]. Thus, we just selected the SSIM index as a benchmark 
for evaluating timing (complexity) performance. To assess 
the method’s complexity, only the computation time of  
 ஺ is measured. The reason for this is thatܨܫܸ_ܹܶܦ
 ஺ performs very well as a separate metric (as canܨܫܸ_ܹܶܦ
be seen from Table 1) and its complexity is half that of  



DWT_VIF (since most of the complexity is due to VIF 
computation on the aggregates of XE and YE).    

Although MATLAB is a useful tool for validating the 
quality performance of a metric, it does not always provide 
an accurate indication of computing complexity. Therefore, 
we used C/C++ implementations for timing measurement. 
For developing quality metrics in C/C++, the Open 
Computer Vision (OpenCV) library is exploited [7]. The 
OpenCV consists of a collection of more than 500 
algorithms written in C functions and a few C++ classes for 
real-time computer vision and image processing. We 
measured the time required for the luminance component of 
images with five popular sizes. Table 2 shows the execution 
time of quality assessment models in C/C++ 
implementations.  

As can be observed from the table, the execution time for 
calculating DWT_VIFA is less than 30% of the execution 
time for SSIM calculation for different image sizes, while its 
accuracy is greater than that of the VIF index (at about 5% 
of its complexity). The effect of the discrete wavelet 
transform in the less complex DWT_VIFA can be considered 
from three points of view. First, the resolution of the 
approximation subband is a quarter that of the original 
image. Second, due to the smaller resolution of the subbands 
in the wavelet domain, we can extract accurate local 
statistics with a small sliding window size of 3×3. Third, the 
employment of orthogonal wavelet decomposition in the 
proposed method makes it possible to calculate VIF using 
the scalar GSM model instead of vector GSM, which leads 
to simpler calculation of VIF.  

Finally, it should be mentioned that all simulations were 
run on a desktop PC with a 2.66-GHz Intel Core 2 Duo CPU 
and 4 GB of RAM. For C/C++ simulations, we used 
Microsoft Visual Studio 2005 Professional Edition. 
 

4. CONCLUSION 
 

In this paper, we proposed a low-complexity method for 
calculating visual information fidelity (VIF) in the discrete 
wavelet domain using the Haar wavelet. This discrete 
wavelet allowed us to calculate VIF by applying the scalar 
GSM model of images instead of vector GSM. We also 
defined an edge map for the images and investigated the 
effect of wavelet subbands in the visual quality assessment. 
Our results show that the first-level approximation subband 
of decomposed images plays an important role in improving 
quality assessment performance and also in complexity 
reduction. The C/C++ implementation of our proposed 
method shows that the VIF computed based only on the 
approximation subbands results in higher accuracy than the 
original VIF proposed in [4], while its complexity is less 
than 30% of the well-known SSIM index.  

Finally, it is worth noting that, since the effect of detail 
subbands is low in the linear combination as investigated, 
this proposed method can be improved by devising a 
technique to determine α adaptively in eq. (13). 
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Fig. 1. Scatter plots of DMOS versus model prediction 

for all 779 distorted images 
 

Table 2. Execution time of quality assessment models 
measured in seconds 

SSIM  DWT_VIFA 
ۯ۷۴܄_܂܅۲

ۻ۷܁܁  

176×144 0.003465 0.000943 0.2722 

320×240 0.010397 0.002698 0.2595 

640×480 0.045733 0.011648 0.2547 

1280×720 0.149188 0.039575 0.2653 

1920×1080 0.336674 0.092802 0.2756 
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