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ABSTRACT
Nonparametric belief propagation (NBP) is a well-known particle-
based method for distributed inference in wireless networks. NBP
has a large number of applications, including cooperative localiza-
tion. However, in loopy networks NBP suffers from similar prob-
lems as standard BP, such as over-confident beliefs and possible non-
convergence. Tree-reweighted NBP (TRW-NBP) can mitigate these
problems, but does not easily lead to a distributed implementation
due to the non-local nature of the required so-called edge appear-
ance probabilities. In this paper, we propose a variation of TRW-
NBP, suitable for cooperative localization in wireless networks. Our
algorithm uses a fixed edge appearance probability for every edge,
and can outperform standard NBP in dense wireless networks.

Index Terms— Cooperative localization, nonparametric belief
propagation, tree-reweighted belief propagation, wireless networks

1. INTRODUCTION

Cooperative localization is an important problem in wireless net-
works, as the availability of positional information can enable many
applications, such as search-and-rescue, asset tracking, and indoor
navigation. State-of-the-art algorithms for cooperative localization
rely essentially on nonparametric belief propagation (NBP) [1,3,5].
NBP is a variation on BP, which is a well-known, low-complexity
inference method, with applications in many fields, including artifi-
cial intelligence, wireless communication, coding theory, computer
vision, and cognitive networks. For continuous random variables,
messages can often not be computed or represented exactly. NBP
was proposed in [1] to address this problem through a particle-based
representation. Both BP and NBP can be interpreted as message
passing algorithms on a graphical model, and are inherently dis-
tributed, thus lending themselves well to distributed inference prob-
lems, such as cooperative localization.

For most applications, the main problem of NBP (and also BP)
is that in graphs with cycles, there are no guarantees on the quality
of the marginal beliefs, nor on the convergence of message pass-
ing. Solutions to this problem include generalized belief propaga-
tion (GBP) [2], NBP over spanning trees (NBP-ST) [3], and tree-
reweighted belief propagation (TRW-BP) [4]. GBP is able to im-
prove on standard BP, but at high computational cost, making it un-
suitable for large-scale networks. NBP-ST performs NBP on two (or
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more) spanning trees, outperforming NBP only in highly connected
networks, with small performance gains. Finally, TRW-BP consid-
ers distributions over all spanning trees, through a concept known
as edge appearance probabilities. TRW-BP has the potential to out-
perform NBP, but relies on the availability of valid edge appearance
probabilities, which are themselves hard to obtain in a distributed
manner. Hence, TRW-BP in its original form is not suitable for a
distributed implementation.

In this paper, we propose a variation of tree-reweighted NBP for
cooperative localization in wireless networks, where we (i) consider
uniform edge appearance probabilities (characterized by the scalar
variable ρ); (ii) allow invalid edge appearance probabilities (i.e., not
corresponding to any distribution over spanning trees). We evaluate
the proposed method as a function of ρ in terms of two performance
metrics: the root-mean square error (RMSE) of the position esti-
mate and the Kullback-Leibler divergence (KLD) of the marginal
belief with respect to the true marginal posterior. We propose an
empirical function for the optimum edge appearance probability that
minimizes the errors (in terms of KLD and RMSE) caused by loops.

The remainder of this paper is organized as follows. In Section
2, we describe cooperative localization using TRW-NBP. An empiri-
cal approach for finding ρ is presented in Section 3. Finally, Section
4 provides some conclusions and suggestions for future work.

2. COOPERATIVE LOCALIZATION BASED ON
TREE-REWEIGHTED NONPARAMETRIC BELIEF

PROPAGATION

2.1. The Localization Problem

Consider Na anchors and Nt targets scattered randomly in a planar
region, and denote the two-dimensional (2D) location of node t by
xt. The target u obtains a noisy measurement dtu of its distance
from node t with some probability Pd(xt,xu):

dtu = ‖xt − xu‖+ vtu , vtu ∼ pv. (1)

For simplicity, we assume the noise vtu has a zero-mean Gaussian
distribution, and ideal model for probability of detection:

Pd(xt, xu) =

{
1, for ‖xt − xu‖ ≤ R,
0, otherwise.

(2)

where R represents transmission radius. We will indicate with the
binary variable otu whether an observation is available (otu = 1)
or not (otu = 0). Finally, each node t has some prior distribution
denoted pt(xt). The joint distribution is given by:

p(x1, ..., xNt , {otu}, {dtu}) =∏
(t,u)

p(otu |xt, xu )
∏

(t,u)

p(dtu |xt, xu )
∏
t

pt(xt). (3)



Our objective is to compute (or approximate) the marginal beliefs
p(xt|{otu}, {dtu}), for every target t. Then, we can easily estimate
the positions, e.g., as mean values of these marginals.

2.2. Graph Representation

The relationship between a graphical model and a distribution
q(x1, ..., xNt) may be represented in terms of potential functions
ψ which are defined over graph’s cliques. A clique (C) is a subset
of nodes such that for every two nodes in C, there exists a link
connecting the two. So the joint distribution is given by:

q(x1, ..., xNt) ∝
∏

cliquesC

ψC({xi : i ∈ C}). (4)

We can now define potential functions which can express the
joint posterior distribution (3). This only requires potential func-
tions defined over variables associated with single nodes and
pairs of nodes. Single-node potential represents the prior in-
formation, i.e., ψt(xt) = pt(xt). The pairwise potential be-
tween nodes t and u, which is defined as likelihood function
ψtu(xt, xu) = p(otu |xt, xu )p(dtu |xt, xu ), is given by:

ψtu(xt, xu) =

{
Pd(xt,xu)pv(dtu − ‖xt − xu‖) when otu = 1

1− Pd(xt,xu) when otu = 0

(5)
Finally, the joint posterior distribution is given by:

p(x1, ..., xNt |{otu, dtu} ) ∝
∏
t

ψt(xt)
∏
t,u

ψtu(xt, xu). (6)

By marginalizing this joint distribution, we can find the true belief
of each node. Exact marginalization is intractable, which is why we
resort to near-optimal message-passing methods.

2.3. Tree-Reweighted Belief Propagation (TRW-BP)

In the standard TRW-BP algorithm the belief at a node t is propor-
tional to the product of the local evidence at that node ψt(xt), and
all reweighted messages coming into node t:

Mt(xt) ∝ ψt(xt)
∏
u∈Gt

mut(xt)
ρut , (7)

where xt is a state of node t, ρtu = ρut is the appearance probability
of the edge (t, u), and Gt denotes the neighbors of node t. The
messages are determined by the message update rule:

mut(xt) ∝
∫
ψu(xu)ψtu(xt, xu)

1/ρtu
∏

k∈Gu\t

mku(xu)
ρku

mtu(xu)1−ρtu
dxu,

(8)
where ψtu(xt, xu) is the pairwise potential between nodes t and u.
On the right-hand side, there is a product over all reweighted mes-
sages going into node u except for the one coming from node t. The
update-rule (8) is carried out over the network. Upon convergence,
the beliefs are computed through (7). In practice, it is more con-
venient to compute the beliefs at every iteration i. This leads to an
equivalent form of TRW-BP: by replacing (7) in (8), we find that the
belief equations and message-update rule of TRW-BP are, respec-
tively, given by:

M
(i)
t (xt) ∝ ψt(xt)

∏
u∈Gt

m
(i)
ut (xt)

ρut (9)

m
(i)
ut (xt) ∝

∫
ψut(xt, xu)

1/ρut M
(i−1)
u (xu)

m
(i−1)
tu (xu)

dxu. (10)

We can now apply TRW-BP to the localization problem. In the
first iteration of this algorithm it is necessary to initialize m1

ut = 1
and M1

t = pt (i.e., information from anchors, if any) for all u, t,
and then repeat computation using (9) and (10) until convergence or
a preset number of iterations is attained. In a practical implementa-
tion, we have to use nonparametric version of TRW-BP (TRW-NBP).
Hence, the beliefs and message update equations, (9) and (10), are
performed using particle-based approximations [3].

2.4. Edge Appearance Probabilities

We will now describe how valid values for ρtu can be found. Given
a graph G, let S be the set of all spanning trees T over G. Let ~ρ be
a distribution over all spanning trees, i.e., a vector of non-negative
numbers such that

~ρ
∆
= {ρ(T ), T ∈ S | ρ(T ) ≥ 0 ,

∑
T∈S

ρ(T ) = 1}. (11)

Observe that there are many such distributions. For a given ~ρ and
a given (undirected) edge (t, u), ρtu = P~ρ{(t, u) ∈ T}, i.e., ρtu
is the probability that the edge (t, u) appears in a spanning tree T
chosen randomly under ~ρ. Thus, ρtu represents edge appearance
probability of the edge (t, u). A valid collection of edge appearance
probabilities must correspond to a valid distribution over spanning
trees. For instance, ρtu = 1 for all edges, is not a valid collection of
edge appearance probabilities, unless the graph G is a tree.

Finding a valid collection ρtu is difficult since there is a large
number of spanning trees even in small graphs. For example, in 4-
node clique there are 16 different spanning trees (Figure 1), and each
edge appears exactly in 8 of them. Observe that if ~ρ is uniform over
all spanning trees, then ρtu = 0.5 for every edge. Discovering all
spanning trees, choosing a good ~ρ, and then computing all ρtu would
require significant network overhead, even for small networks. In
[7], an alternative option is described, based on searching for trees
(not necessarily spanning trees) in G. In any case, determining a
valid collection ρtu requires a procedure similar to routing, which
we prefer to avoid for our distributed inference problem.

We note that the choice ρtu = 1 for all edges corresponds to
standard BP. In TRW-BP on graphs with cycles, it is easy to see that
ρtu ≤ 1 for all edges. Hence, by removing the restriction of valid
ρtu and making ρtu uniform, we intuit that we can combine the ben-
efits of BP (distributed implementation) and of TRW-BP (improved
performance).

3. OPTIMIZING THE EDGE APPEARANCE
PROBABILITY

From now on, we will consider uniformly reweighted NBP, i.e.,
ρtu = ρ for all edges. We will now evaluate the impact of ρ on
TRW-NBP through Monte Carlo simulation. We will first consider
a small-scale network with 4 nodes, for which we can compute the
true marginal posteriors. From this network, we will draw some im-
portant conclusions necessary for larger networks. Then, we deter-
mine the optimal ρ, with respect to transmission radius, in grid and
random topologies. Due to the high computational cost of learning
the optimal ρ in a 2D space, we will focus on 1D localization in the
simulations. We use the following parameters: standard deviation of
Gaussian noise is 30 cm, 200 particles per message, and 8 iterations.
Finally, all results represent the average over 200 Monte Carlo runs.



(a) (b)

Fig. 1: (a) 4-node clique, and (b) 16 spanning trees. Each edge (e.g., bolded
edge) appears exactly in 8 out of 16 spanning trees, so ρ = 0.5 for each edge,
under a uniform distribution over the spanning trees.

3.1. A 4-Node Clique

We consider fully-connected network with 4 targets in 1D space (see
Figure 1a for 2D case). In addition, there are 4 anchor nodes (not de-
picted), each of them connected exactly to one target. Our goal is to
estimate the true belief, TRW-NBP beliefs and estimated locations.
The latter are given by the minimum mean square error (MMSE) es-
timate from the belief. We run TRW-NBP for different values of ρ
and, for each result, we compute KLD between true and TRW-NBP
beliefs, and RMSE of estimated locations, all shown in Figure 2.
According to Figure 2, we can make the following conclusions:

1. Both RMSE and KLD reach the minimum for the same ρ <
1. That means that it is sufficient to use only RMSE for learn-
ing the optimal ρ in larger networks, where the computation
of true beliefs (necessary for computing KLD) is intractable.

2. The optimal ρ (ρopt) is 0.5, which is the same as the theo-
retical value (Figure 1b), under a uniform distribution over
spanning trees. NBP (ρ = 1) performs worse than optimum
TRW-NBP in terms of both KLD and RMSE. For a compari-
son between the three different beliefs, see Figure 3.

3. A wide range of ρ (in our example, 0.4-1) provides better per-
formance than NBP in terms of both KLD and RMSE. That
means that we can even use a coarse approximation of ρopt.

4. The RMSE is rather insensitive to ρ, for ρ > ρopt. Hence,
care needs to be taken when interpreting RMSE figures as
a function of ρ, as the effect on KLD may be much more
pronounced.1

Taking these conclusions into account, we now move on larger net-
works.

3.2. Grid and Random Topology Networks

We consider a network with 25 target nodes and 4 anchors in a 20m
wide deployment area. We consider different values of the commu-
nication range2 R, and the edge appearance probability ρ.

For the grid topology (where the distance between neighboring
nodes is 0.6 m), Figure 4a shows the RMSE as a function of ρ, with

1This could be a problem for learning in larger networks, where it is prac-
tically impossible to obtain smooth curves. However, we always use only
confident digits (by rounding-up RMSE) and, in case of more minimums, we
use the minimum corresponding to the lowest value of ρ (e.g., see Figure 5a).
This approximation still keeps KLD quite close to minimum.

2The values of R are chosen so as to provide the same average node de-
gree (nd) both for grid and random topology.
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parameter nd. We mark the optimal ρ, for each distinct value of
nd. This allows us to plot ρopt as a function of nd (see Figure 4b).
We observe that that ρopt decreases nearly exponentially with nd.
Hence, we fit ρopt(nd) as

ρopt(nd) = ρ0 · e−kρnd , (12)

where parameters ρ0 = 3.187 and kρ = 0.199 are found using least-
square fitting. We did the same test for random topology (Figure 5),
and obtained: ρ0 = 2.656 and kρ = 0.161. Note that for random
topology, it is harder to obtain sufficient statistics (Figure 5a), so the
fitting is less confident compared with the grid topology. In any case,
we conclude the following:

1. The difference between coefficients for random and grid
topology is small, which means that the value of ρopt de-
pends more on the average node degree than the particular
network configuration.

2. Though tempting to state that choosing ρ = 1 will lead to
similar performance as ρ = ρopt, due to the almost flat curves
for ρ > ρopt, this statement is not true when the performance
is measured in terms of KLD (see Figure 2).

As an aside, when nd becomes very small, the fitted value for
ρopt can be larger than 1. This is merely a side-effect of the fitting.
In practice, when ρopt > 1, one should set ρopt = 1.

Finally, it is worth noting that nd can easily and quickly be
found using a consensus algorithm [8]. In that case, the computa-
tional/communication cost will be nearly the same as for NBP.



0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

edge appearance probability (rho)

R
M

S
 e

rr
o
r 

[m
]

 

 

RMSE

optimum

nd=7.79

nd=12.29

nd=13.79

nd=15.29

nd=9.29

nd=10.79

nd=6.29

(a)

6 8 10 12 14 16
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average node degree (nd)

o
p
ti
m

u
m

 r
h
o

 

 

optimum rho

exp. fitting

(b)

Fig. 4: Grid topology: (a) RMSE for different transmission radius, (b) Empirical model for optimum ρ.
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Fig. 5: Random topology: (a) RMSE for different transmission radius, (b) Empirical model for optimum ρ.

4. CONCLUSIONS

We presented a cooperative localization algorithm based on tree-
reweighted nonparametric belief propagation (TRW-NBP), which
combines the distributed nature of NBP and the improved perfor-
mance of TRW-BP. In contrast to TRW-BP, we propose to use a
constant edge appearance probability ρ. In contrast to NBP, we
propose to set ρ < 1. Through Monte Carlo simulations, we have
verified performance gains in terms of RMSE and KLD w.r.t. the
true distribution. We have found that (i) the optimal ρopt does not
depend on the particular criterion (RMSE or KLD); (ii) ρopt de-
creased in networks with more loops; (iii) ρopt can be expressed as
a simple function of the average node degree (nd). Our future work
will focus on the extension to 2D and 3D space. Preliminary results
(not reported in this paper) indicate similar behavior of ρopt as a
function of nd. Our final goal is the implementation and evaluation
of different variations of belief propagation on wireless motes.
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