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ABSTRACT

We present a study on purely data-based recognition of animal sounds,
performing evaluation on a real-world database obtained from the
Humboldt-University Animal Sound Archive. As we avoid a preselec-
tion of friendly cases, the challenge for the classifiers is to discrimi-
nate between species regardless of the age or stance of the animal. We
define classification tasks that can be useful for information retrieval
and indexing, facilitating categorization of large sound archives. On
these tasks, we compare dynamic and static classification by left-right
and cyclic Hidden Markov Models, recurrent neural networks with
Long Short-Term Memory, and Support Vector Machines, as well as
different features commonly found in sound classification and speech
recognition, achieving up to 81.3 % accuracy on a 2-class, and 64.0 %
on a 5-class task.

Index Terms— Sound Classification, Bioacoustics, Audio Pat-
tern Recognition

1. INTRODUCTION

In the field of bioacoustics, a multiplicity of approaches exist for
classifying animal sounds. Often they are used in order to monitor
populations of certain species, such as whales [1] or birds [2], thereby
suiting the algorithms to the special characteristics of the animal
vocalizations involved. However, more recently, with increasing
efforts invested in digitization of sound archives, increasing attention
is being paid to general frameworks for audio classification that can
be useful in indexing and search procedures. For example, in [3], an
effective indexing algorithm for animals with curve-like harmonic
vocalizations, such as various species of birds, was presented and
evaluated on bird songs contained in the Animal Sound Archive
(Tierstimmenarchiv) of the Humboldt-University of Berlin [4], which
will be subsequently referred to as ‘HU-ASA database’.

In this paper, we do not directly aim at the domain of information
retrieval, but our study rather relates to previous work done on sound
classification. On the other hand, sound classification, especially into
coarse categories that can be robustly discriminated, can be of use in
a preselection step for those approaches tailored to certain classes of
sounds, and it can facilitate the work of specialists working on cate-
gorization of sound databases. In the past, Support Vector Machine
(SVM)-based static classification of audio files, using segment-wise
functionals (e. g., mean and standard deviation) was proposed in [5],
and used for animal sounds in [6]. Other approaches frequently
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employ a dynamic classification process, e. g., by Hidden Markov
Models (HMMs) [7] or, in the animal vocalization domain, by neural
networks [8]. However, to our knowledge, there does not exist a com-
parative study on the performance of static and dynamic classification
of animal vocalizations. Hence, a major contribution of our study is
to evaluate SVMs, HMMs with different topologies, and recurrent
neural networks (RNNs) with Long Short-Term Memory (LSTM)
on the HU-ASA database. Additionally, we will compare traditional
cepstral features which are commonly used in sound classification
to an enhanced feature set derived from speech emotion recognition,
which arguably is also an instance of sound classification.

The remainder of this paper is structured as follows: first, we
describe in detail the evaluation framework for sound classifcation
that we have derived from the HU-ASA database, in Sec. 2. Then, we
describe our classification and acoustic feature extraction methods
in Sec. 3 before presenting our experimental results in Sec. 4 and
concluding with an outlook in Sec. 5.

2. EVALUATION DATABASE

Our evaluation database builds on the HU-ASA database, which is
a large archive of animal vocalizations annotated with the species
and additional metadata, including recording conditions and type
of vocalization for each audio file. We obtained all the 1 418 audio
files available in MP3 encoding from the archive1 as of mid 2010.
For each species, we automatically annotated the audio files with
(biological) class (e. g., Aves, Mammalia), order (e. g., Passeriformes,
Primates), and family (e. g., Felidae, Canidae) according to the Lin-
naean taxonomy (rank-based biological classification), retrieved for
each species from Wikipedia. The majority of the available record-
ings consist of birds (Aves) and mammals (Mammalia), as shown in
Tab. 1. ‘Others’ include Sauropsida, Hexapoda, and recordings that
could not be annotated automatically due to missing information in
the encyclopedia. The total recording length of the files was 20 423 s
(5 h 40 min 23 s). Amphibia, Insecta, and Reptilia were not included
in our further experiments due to a small number of instances (see
Tab. 1).

From the biological classification, we derived two tasks that we
found suitable for audio pattern recognition, considering the number
of available instances and the ‘discriminability’ (in an informal sense)
of the vocalizations. The tasks are shown in Tab. 2. The first (2-class)
task is to discriminate between songbirds (Passeriformes) and other
birds (Non-Passeriformes), the latter including – sorted by number of
instances – the orders Anseriformes, Charadriiformes, Galliformes,
Psitacciformes, Gruiformes, and 24 other orders with often a very

1http://www.tierstimmenarchiv.de/
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(biol.) class # inst. min mean max Σ
Aves 868 2.4 s 14.8 s 64.7 s 12 210 s
Mammalia 487 1.0 s 14.7 s 37.7 s 6 954 s

Amphibia 27 1.8 s 19.6 s 65.9 s 529 s
Reptilia 7 11.2 s 22.5 s 39.6 s 157 s
Insecta 19 2.3 s 16.0 s 30.1 s 287 s

Other 10 133 s

Σ 1 418 20 423 s

Table 1: Number of instances, as well as min(imum), mean,
max(imum), and total recording length (Σ) of the audio files, by
the biological class of the species in the HU-ASA database.

class # inst.
Passeriformes 282
Non-Passeriformes 586

Σ 868

Primates 90
Canidae 43
Felidae 62

Σ 1 063

Table 2: Number of instances in the 2-class (Passeriformes / Non-
Passeriformes) and 5-class tasks defined on the HU-ASA database.

low number of instances. Furthermore, to define an arguably more
complex task, we added the mammals (Mammalia) of the families
Felidae and Canidae, as well as the instances of the biological order
Primates to the 2-class task, resulting in a 5-class problem as shown
in Tab. 2. Both of these tasks are challenging due to the real-world
nature of the database. In particular, instances of one class comprise
different types of vocalizations of the same species, depending on
the situation and stance (i. e., aggression or warning calls), as well as
animals of different age, from young to full-grown.

3. METHODOLOGY

3.1. Classifiers

We evaluated static classification by SVMs with polynomial kernel,
as well as dynamic classifiers, including two different topologies of
HMMs, as well as a LSTM-RNN. An HMM topology commonly
found in sound classification is a left-right HMM: assuming N states
in total, state transitions are allowed from state i = 1, . . . , N − 1 to
states i and i+ 1, following a strictly linear topology. This topology
appears to be naturally suited to phoneme recognition in human
speech, modelling transitions from one phoneme to the other, and
repetition of acoustic patterns according to the speech frequency.
However, it can be argued that in contrast to human speech, animal
vocalizations are highly repetitive, motivating the usage of a cyclic
topology, where in addition to the transitions in the left-right HMM,
an additional transition from state N to the first state 1 is allowed. In
our experiments we fixed N = 8.

An alternative architecture for dynamic sound classification is
built on recurrent neural networks (RNNs). For instance, in [8], a
feedforward multilayer perceptron was proposed for classifying ani-
mal vocalizations. In contrast to basic feedforward neural networks,
recurrent connections from the output to the input provide a RNN
with a kind of memory, which may influence the network output in
the future. Although RNNs have access to past (and future) infor-
mation, the range of context is limited to a few frames due to the

vanishing gradient problem: the influence of an input value decays
or blows up exponentially over time. This problem is circumvented
by extending the nonlinear units to LSTM memory blocks, contain-
ing linear memory units, whose internal state is maintained by a
recurrent connection with constant weight 1.0, and multiplicative
gate units to control input, output, and internal state. Hence, dur-
ing training, the network automatically learns when to store, use, or
discard information acquired from previous inputs or outputs. This
makes LSTM-RNNs useful for the task considered in this study, as
the required amount of context is unknown a priori and would oth-
erwise have to be determined experimentally for each of the classes
to discriminate. In various signal processing applications, including
emotion recognition [9] and note onset detection [10], they have
been proven useful for purely data-based discriminative learning of
sequence labeling tasks, thereby often outperforming more traditional
sequence classifiers such as HMMs.

Hence, we additionally took into account LSTM networks for
classification, which had one hidden layer with 100 LSTM memory
cells. The size of the input layer was equal to the number of features,
while the size of the output layer was equal to the number of classes to
discriminate. Its output activations were restricted to the interval [0; 1]
and their sum was forced to unity by normalizing with the softmax
function. Thus, the normalized outputs represent the posterior class
probabilities.

3.2. Acoustic Features

As a basic feature set we extracted the Mel frequency cepstral co-
efficients (MFCCs) 1–12 along with energy and their first (δ) and
second order (δδ) regression coefficients. MFCCs are commonly
found in speech processing applications, but have also been success-
fully used in various audio classification tasks [5–7]. They appear
particularly suited to a general framework for audio classification as
they capture a broadband frequency range, and integrate a perceptual
weighting of individual frequency bands as performed by the human
ear. Furthermore, in [7] they were found superior to the MPEG-7
spectral projection features as used in [3] for sound classification
using HMMs. Note that the regression coefficients allow to integrate
past and future context information. The resulting 39-dimensional
feature set will be denoted by ‘MFCC’.

For static classification of entire signals, it is necessary to re-
duce the time-varying frame-wise acoustic features to functionals.
In [5], mean and standard deviation were proposed; however, espe-
cially applications in the paralinguistic domain, tend to employ a
broader range of functionals, including extremes and higher-order
moments [11]. Furthermore, in this field, often additional features
including zero-crossing rate (ZCR), fundamental frequency (F0) and
harmonics-to-noise ratio (HNR), are used. We investigated the use-
fulness of the feature set used for the INTERSPEECH 2009 Emotion
Challenge [11], as described in Tab. 3, since it can be argued that emo-
tion recognition is an instance of sound classification, and especially
that the aforementioned features could allow to discriminate between
animals with voiced and unvoiced sounds. We will denote the func-
tionals of the the 32 low-level descriptors (LLD) by ‘IS09-func’. To
be able to separately evaluate classifier and feature performance, we
also investigated the functionals listed in Tab. 3 computed only from
the MFCCs 1–12 along with energy; this feature set will be called
‘MFCC-func’. The IS09-func and MFCC-func feature sets consist of
384 and 312 features, respectively. For best transparency of results,
all feature sets were extracted with our open-source feature extractor
openSMILE [12].
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LLD Functionals
(δ) ZCR mean
(δ) RMS Energy standard deviation
(δ) F0 kurtosis, skewness
(δ) HNR extremes: value, rel. position, range
(δ) MFCC 1–12 linear regression: offset, slope, MSE

Table 3: INTERSPEECH 2009 Emotion Challenge feature set (IS09-
func): low-level descriptors (LLD) and functionals.

4. EXPERIMENTS

Classifiers were evaluated using stratified 10-fold cross validation,
creating the folds with the Weka toolkit [13], using the default random
seed of 0 for easy reproducibility. In each iteration, 10 % of the data
were used for evaluation, and another 10 % for validation whenever
needed, e. g., for neural network training.

4.1. Classifier Training

HMMs were trained using the common Expectation-Maximization
(EM) algorithm. After six initial iterations, additional Gaussian mix-
tures were added consecutively and re-estimated during four EM
iterations, until the final models had 16 Gaussian mixtures for each
state. For network training, supervised learning with early stopping
was used as follows: we initialized the network weights randomly
from a Gaussian distribution (μ = 0, σ = 0.1). Then, each sequence
in the training set of each fold was presented frame by frame to the
network. To improve generalization, the order of the input sequences
was determined randomly, and Gaussian noise (μ = 0, σ = 0.3)
was added to the input activations. The network weights were iter-
atively updated using resilient propagation. To prevent over-fitting,
the performance (in terms of classification error) on the validation set
was evaluated after each training iteration (epoch). Once no improve-
ment over 20 epochs had been observed, or 100 training epochs had
elapsed, the training was stopped and the network with the best per-
formance on the validation set was used as the final network. SVMs
were trained using Sequential Minimal Optimization (SMO) on stan-
dardized features (zero mean and unit variance), using a complexity
constant of 0.1. All other parameters correspond to the default in the
Weka toolkit for easy reproducibility.

As we are generally dealing with highly unbalanced classification
tasks, the training set for each fold was upsampled for both the
LSTM-RNN and SVM classifiers, i. e., all training instances of each
minority class were copied until a near-uniform class distribution on
the training set was achieved. Note that balancing has no effect on the
training of the HMMs by the EM algorithm, as each class is modeled
by an individual HMM.

4.2. Results

Classification with HMMs was done by assigning the class corre-
sponding to the model with the maximum likelihood (ML), which is
particularly suitable to unbalanced classification tasks, as the a-priori
class probabilities do not affect the decision. Classification with the
LSTM-RNN was performed as follows: each sequence in the test
set was presented frame by frame (in correct temporal order) to the
input layer, and each frame was assigned to the class with the highest
probability as indicated by the output layer. From the frame-wise
decisions, the majority vote was taken as label for the sequence.

In Tab. 4, we show the unweighted (UAR) and weighted aver-
age recall (WAR) on the 2-class and 5-class tasks of the HU-ASA

[%] 2-class 5-class
Classifier Features UAR WAR UAR WAR
SVM IS09-func 69.0 72.0 46.4 57.2
SVM MFCC-func 73.9 75.6 42.2 56.0

LR-HMM MFCC 79.0 79.8 47.3 63.4
cyclic HMM MFCC 79.0 79.6 49.5 64.0

LSTM MFCC 80.0 81.3 41.1 62.3

Table 4: Results on the 2-class and 5-class tasks of the HU-ASA
database, using various classifiers (Sec. 3.1) and feature sets (Sec. 3.2).
LR-HMM is a left-right HMM. UAR and WAR denote (un)weighted
average recall. 16 Gaussian mixtures per state were estimated for the
HMMs.

database, as defined in Tab. 2. We adopt UAR as an additional
evaluation measure due to the unbalanced data sets. Note that by
always deciding for the majority class (Non-Passeriformes), a WAR
of 55.1 % and a UAR of 20.0 % are obtained on the 5-class task,
and a WAR / UAR of 67.5 % / 50.0 % on the 2-class task. In SVM
classification on the 2-class task, the MFCC-func feature set outper-
forms the IS09-func set in terms of WAR by 3.6 % absolute, and
this improvement is even significant at the 5 % level, according to
a one-tailed z-test. However, the IS09-func feature set seems to de-
liver significantly higher UAR in the 5-class task (4.4 % absolute
improvement).

Comparing to dynamic classification by HMMs, it can be seen
that both types of HMMs outperform static classification by SVM,
and that the cyclic HMM is in turn slightly superior to the left-right
HMM. Yet, the latter observation fails to be significant on the 5 %
level. The fact that there is no significant difference in the perfor-
mance of cyclic and left-right HMM may be explained by examining
the estimated transition probabilities of the HMM, in particular the
‘cycle probability’ pN,1, which are shown for each class, on aver-
age across the 10 folds, in Tab. 5. These probabilities are generally
quite low, indicating that the cyclic connection in the HMM is of
lower importance. However, it is notable that the cycle probabilities
considerably differ: while they are around 28 % in the models for
songbirds (Passeriformes) and primates, the probability is below 10 %
for Felidae. While we also investigated the LLDs from Tab. 3 as fea-
tures for the HMMs, these could not improve the results. Concluding
the discussion of HMMs, the impact of using different numbers of
Gaussian mixtures for the HMMs is shown in Fig. 1. Interestingly,
the cyclic HMM performs better than the left-right HMM for small
numbers of mixtures, and the UAR on the 5-class task seems to be
largely unaffected by the number of mixtures, despite the fact that ML
classification partially compensates for the unequal class distribution.

Finally, concerning the performance of the LSTM-RNN, there is
no clear picture: while it outperforms (yet not significantly, p > 5%)
the HMMs on the 2-class task both in terms of WAR and UAR, it
shows the lowest performance among the classifiers concerning the
UAR on the 5-class task, while yielding a significantly (p < 0.1%)
higher WAR in comparison with the best SVM, and a slightly (not
significantly) inferior WAR in comparison to both types of HMMs.
Naturally, additional investigations as to the network topology and
training parameters would be needed for a thorough evaluation of
the LSTM-RNN performance; still, we believe that the observed
difference between the 2-class and 5-class tasks can be attributed
to insufficient generalization due to the relatively little amount of
training data for the Primates, Canidae, and Felidae classes – note
that upsampling does not help generalization. Thus, the decision of
the LSTM-RNN in the 5-class task remains strongly biased towards
the majority class, which results in low UAR.
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(a) left-right HMM, 2-class task (b) cyclic HMM, 2-class task (c) left-right HMM, 5-class task (d) cyclic HMM, 5-class task

Fig. 1: Recognition performance in terms of (un)weighted average recall (UAR / WAR) on the HU-ASA database by 8-state HMMs with
left-right ((a), (c)) and cyclic ((b), (d)) topologies, depending on the number of mixtures per state.

class pN,1 [%]
Passeriformes 28.1
Non-Passeriformes 17.2
Canidae 14.2
Felidae 9.9
Primates 28.0

Table 5: Estimated cycle probabilities pN,1 for the cyclic HMMs, for
each class in the 5-class task, averaged over 10 folds.

5. CONCLUSION

We have proposed an evaluation framework for sound classification
based on a challenging real-world database of animal vocalizations,
and compared the performances of static and dynamic classifiers,
including a novel type of recurrent neural network. Overall, dynamic
classification delivered higher accuracy. Notably, no clear picture
could be established in the comparison of standard cepstral features
with an enhanced feature set containing pitch information – thus,
an interesting area for further research will be to further evaluate
the relevance of different feature and functional types for the clas-
sification of animal vocalizations. Furthermore, we will introduce
data-based feature extraction by Non-Negative Matrix Factorization
(NMF) to the domain of animal sound classification, but using global
optimization constraints instead of simple projections, as done for the
MPEG-7 spectral projection features in [7]. Finally, we will evaluate
the presented classification systems in a hierarchical classification
framework, e. g., by combining the songbird / non-songbird classifier
with a bird song recognizer.
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[9] M. Wöllmer, B. Schuller, F. Eyben, and G. Rigoll, “Combining
Long Short-Term Memory and Dynamic Bayesian Networks for
incremental emotion-sensitive artificial listening,” IEEE Journal
of Selected Topics in Signal Processing (JSTSP), Special Issue
on Speech Processing for Natural Interaction with Intelligent
Environments, vol. 4, no. 5, pp. 867–881, October 2010.
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