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ABSTRACT

The scarcity of available multi-track recordings constitutes a severe
constraint on the training of probabilistic models for voice extrac-
tion from polyphonic music. We propose a novel training method to
estimate a spectral envelope of a singing voice that makes it possi-
ble to train the models from a polyphonic music without segregat-
ing a singing voice. We implement this method as an extension to
the existing W-PST method, which concurrently estimates singing
voice fundamental frequency (F0) and phoneme from polyphonic
music. The novel training method is based on random sampling
from probabilistic distributions. We conducted experiments on con-
current F0 and phoneme estimation and confirm the effectiveness of
our method.

Index Terms— Singing voice, Phoneme recognition, F0 esti-
mation, Spectral envelope estimation.

1. INTRODUCTION

We aim to develop a computer that has the ability to distinguish
singing voices in the same manner that humans do. When a hu-
man hears singing voices that are mixed with other sounds, he or
she has an innate ability to distinguish singing voices from such
mixed sounds. The current ability of computers to recognize the
real world auditory scene is still inadequate when compared to hu-
man ability. In this paper, we focus on the fundamental frequency
(F0) and phoneme (utterance content) as important elements of the
singing voice. Computational recognition of F0 and phonemes is im-
portant from an industrial standpoint, since the fruits of this research
are applicable in many important areas, including metadata descrip-
tion for music content, content-based music information retrieval,
and sophisticated music playback interfaces.

We previously proposed a method for estimating phoneme
from singing voice polyphonic music, called W-PST (Weighted-
composition of Probabilistic Spectral Template) method [1]. This
method stochastically models a mixture of a singing voice and other
instrumental sounds without segregating the singing voice. It can
also estimate a reliable spectral envelope by estimating it from the
harmonic structure of many voices with various F0s. This method
can be considered a new framework for recognizing a singing voice
in polyphonic music because it is designed to concurrently recog-
nize not only a phoneme but also other elements of a singing voice,
including a singer’s name and gender.

However, this method had a major technical issue; a mono-
phonic singing voice, which is not always available, is required
to train the models. Therefore, the scope of application of the
method was limited. Moreover, although we proposed a framework
that could concurrently estimate phonemes and F0, we evaluated
only phoneme estimation tasks where the correct F0 was given in
advance.

This work was supported by CrestMuse, CREST, JST.

We propose a training method that—in contrast to existing
approaches—requires no separate singing voice recording, but in-
stead trains a probabilistic model directly from polyphonic mixes of
vocal music. Hence, all recordings of vocal music become available
as potential training data. The original W-PST method approximated
the mixture of sounds from a singing voice and other instruments by
using the first-order Taylor expansion. However, the equation ob-
tained by the method was too complicated to train the models. Thus,
we developed a new approximative optimization method based on
a random sampling from probabilistic distribution and enabled W-
PST to estimate the spectral envelope of a clean singing voice from
the polyphonic music. Moreover, in this paper, we evaluated our
method using concurrent F0 and phoneme estimation tasks.

A great deal of research has been conducted on lyrics or
phoneme recognition in the polyphonic singing voice [2, 3, 4, 5],
and vocal F0 estimation [6, 7, 8, 9, 10]; however, to our knowl-
edge, no studies have concurrently estimated both F0 and phoneme.
The approaches of these studies differ from ours in that they either
ignored the influence of accompaniment sound or segregated the
singing voice from other instruments.

The rest of this paper is organized as follows. In the next section,
the original W-PST method is described. Section 3 explains how the
original W-PST method was extended. In Section 4, we describe the
concurrent estimation of F0 and phoneme experiments, which was
not in our previous paper[1]. In Section 5, we draw conclusions and
point out future directions.

2. W-PST METHOD

This section gives an overview of the W-PST method [1]. This
method consists of the following: (i) modeling of the singing voice
accompanied by the other instruments based on templates of spec-
tral envelope of singing voice, and (ii) estimation of the models that
represent the templates of the spectral envelope. Section 2.1 and 2.2
explain (i) and (ii), respectively.

2.1. Modeling of a Singing Voice in a Polyphonic Music

W-PST method expresses the observed spectrum of a singing
voices “as is” without segregation by stochastically modeling the
generation process of the spectrogram of a singing voice with ac-
companiment sounds.

2.1.1. Probabilistic spectral template

We assume a spectrum of polyphonic sound mixture, y(f), is
generated from the probabilistic variables Yf . We call these vari-
ables the probabilistic spectral template. Here, f represents a fre-
quency in log scale, and y represents a spectral power in log scale.
We then assume that Yf can be expressed by two different proba-
bilistic spectral templates, Y ′

v,f and Yn,f , and a function H(f ; f0),
which depends on a frequency f , as the following equation (Figs. 1
and 2),
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Fig. 1. Generation process of the observed spectrum [1]. The prob-
ability values are indicated by darkness.
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Fig. 2. Example of vocal spectral template [1], which is generated
from the vocal envelope template and the excitation function.

Yf=log(exp(Yv,f + gv) + exp(Yn,f + gn)), (1)
Yv,f=Y ′

v,f + H(f ; f0), (2)

H(f ; f0)=
X

h

N (f ; log f0 + log h, σ2
H). (3)

Here, Y ′
v,f represents a spectrum of a vocal, which is called the vocal

spectral template, and Yn,f represents that of the other instrumental
sounds, which is called the noise spectral template. H(f ; f0) rep-
resents a spectrum of a vocal cord vibration of pitch f0, which is
called an excitation function. gv and gn represent the gain parame-
ters. By changing them, the S/N ratio of the vocal and noise spectral
templates can be controlled. Note that we assume the additivity of
the power spectrum is in the linear scale and the source-filter model.

We assume that Y ′
v,f and Yn,f follow the Gaussian distribu-

tion (in log scale) and are represented by Y ′
v,f ∼ N (y; μ′

v,f , σ2
v,f ),

Yn,f ∼ N (y; μn,f , σ2
n,f ), where N (y; μ, σ2) represents the Gaus-

sian distribution with mean μ and variance σ2.
Since the probabilistic spectral template expressed in (1) is dif-

ficult to calculate, we approximate Yf using a Gaussian distribution
based on the first-order Taylor expansion as follows,

Yf∼N (y; μf , σ2
f ) (4)

μf=log(exp (μv,f + gv) + exp (μn,f + gn)) (5)
μv,f=μ′

v,f + H(f ; f0) (6)

σ2
f=

(exp (μv,f + gv))2σ2
v,f + (exp (μn,f + gn))2σ2

n,f

(exp (μv,f + gv) + exp (μn,f + gn))2
. (7)

2.1.2. Phoneme recognition and F0 estimation
To recognize a phoneme using this model, first, an individual

template, θp
v , for each phoneme p has to be prepared. Given the

F0 of the singing voice f0 and the observed spectra y(f), we can
estimate a pair of the phoneme and the F0, {̂i, f̂0}, involved in the
spectra by the following equation:

{̂i, f̂0}=argmax
i,f0

max
gv,gn

X
f

log pf (y(f); θi,v, θn, f0, gv, gn) (8)

≈argmax
i,f0

max
gv,gn

X
f

logN (y(f); uf (θi,v, θn, f0, gv, gn),

σ2
f (θi,v, θn, f0, gv, gn)) (9)

where uf and σ2
f are defined by (5) and (7), respectively.

To calculate Eq. (9), we need to optimize the parameter θ =
(gv, gn, f0) using the quasi-Newton method based on the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) method, which is a class of
hill-climbing optimization techniques.

2.2. Estimation of Spectral Templates from a Monophonic
Singing Voice

We estimate a spectral envelope that is represented by Y ′
v,f in

Eq. (1) from a monophonic singing voice. The spectral envelope of
the singing voice cannot be directly observed; what we can observe
is a harmonic structure that is considered to be points sampled from
the original spectral envelope. Thus, in general, it is difficult to esti-
mate the original spectral envelope from a single harmonic structure.
We overcome this difficulty and estimate a reliable spectral envelope
using many harmonic structures with various F0s. Moreover, since
we estimate the spectral envelope as a set of probabilistic distribu-
tions, the estimated envelope is robust against the fluctuation of the
singing voice and the difference in conditions between the training
and testing data.

Since volumes could differ from frame to frame, we need a
scheme to normalize such volume differences when we estimate the
envelope from many harmonic structures. We consider the volume
of each frame as an unknown parameter, and estimate it concurrently
with the parameters of the model for estimating the spectral enve-
lope.

2.2.1. Mixture of experts

For a spectral template model, we use the mixture of experts
(MoE) model [11] based on the linear regression model. This model
represents μv,f and σ2

v,f of a spectral template as

μv,f=
X

i

Gm(f |ψm, μm, σ2
m)(amf + bm) (10)

σ2
v,f=

X
i

Gi(f |ψm, μm, σ2
m)2β2

m, (11)

where Gm(f |ψm, μm, σ2
m) is the output of the gating network, and

we use a normalized Gaussian function [12] defined by

Gm(f |ψm, μm, σ2
m) =

ψmN (f |μm, σ2
m)P

m′ ψm′N (f |μm′ , σ2
m′)

. (12)

Here, {ψm, μm, σ2
m, am, bm, β2

m} is a set of unknown parameters,
where ψm satisfies ψm ≥ 0 and

P
m ψm = 1. These parame-

ters can be estimated using the expectation-maximization (EM) al-
gorithm.

2.2.2. Iterative parameter estimation

When we observe harmonic structures si(i = 1, . . . , I), which
consist of the log power of the h-th harmonic component, yi,h, and
its frequency, fi,h, denoted by

si = {(fi,1, yi,1), . . . (fi,h, yi,h), . . . (fi,Hi , yi,Hi)}, (13)
the target likelihood function to be maximized is defined by

L =

IX
i=1

HiX
h=1

logN (yi,h + ki; μv,fi,h , σv,fi,h), (14)

where ki represents the offset parameter, which normalizes the vol-
ume of the harmonic structure. Since it is difficult to estimate both
ki and the parameters of MoE at the same time, we update them
sequentially. As for the noise spectral envelope, we can estimate
the parameter in the same manner by considering the spectrum as
si(i = 1, . . . , I).
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3. ESTIMATION OF SPECTRAL TEMPLATES FROM A
SINGING VOICE IN A POLYPHONIC MUSIC

In this section, we describe a new method to expand the W-
PST method so that the template can be estimated from polyphonic
singing voices. We concurrently estimate the parameters of the voice
envelope template and noise spectral template.

In Section 2.1.1, we approximate the sum of log-normal distri-
bution using the first-order Taylor expansion. However, the obtained
equations, Eq. (4)!A(7), have become so complex that it is difficult
to use these approximated equations to estimate the parameters of
the templates. Our approach to estimate them is to strictly calcu-
late the sum of log-normal distribution and estimate the parameters
based on an approximative algorithm.

3.1. Basic formulation of an objective function
The observed spectra are represented as y1(f), · · · , yi(f), · · · , yI(f)

and the parameters of the voice envelope template and the noise
spectral template to be estimated are written as

θv = {ψv,m, μv,m, σ2
v,m, av,m, bv,m, β2

v,m}, (15)
θn = {ψn,m, μn,m, σ2

n,m, an,m, bn,m, β2
n,m}, (16)

respectively. The mean parameter of the vocal spectral template is
calculated as μv,f,i = μ′

v,f + H(f ; f0(i)) by adding the excita-
tion function. Note that we assume the F0 sequence of the observed
spectrum, f0(0), · · · , f0(i), · · · , f0(I), is given.

The objective function to be maximized is written as

L=

Z IX
i=1

log pi,f (y; θv, θn, gi,v, gi,n)df (17)

=

Z IX
i=1

log

„Z yi(f)

−∞
N (log(exp(yi(f)) − exp(U))

; μv,f,i + gi,v, σ2
v,f )N (U ; μn,f + gi,n, σ2

n,f )

exp(yi(f))

exp(yi(f)) − exp(U)
dU

«
df (18)

=

Z IX
i=1

log(

Z yi(f)

−∞
N (log(exp(yi(f)) − exp(U))

; μn,f + gi,n, σ2
n,f )N (U ; μv,f,i + gi,v, σ2

v,f )
exp(yi(f))

exp(yi(f)) − exp(U)
dU)df (19)

where pi,f (y; θv, θn, gi,v, gi,n) represents a probabilistic density
function of composed spectral template1. Note that gi,v and gi,n are
the parameters used to normalize the volume of each frame, which
is similar to ki in Section 2.2.2 . Practically, the integral in the above
equation is substituted in sum operations in the discrete frequency
scale because continuous wavelet transform is calculate in discrete
time. Here, the parameters to be estimated are {gi,v, gi,n, θv, θn}.
3.2. Approximative parameter estimation based on a random
sampling

Since it is difficult to estimate all the parameters at the same
time, we estimate them successively and iteratively. We first es-
timate gi,v and θv based on Eq. (18) considering gi,n and θn as
constants and we then estimate gi,n and θn based on Eq. (19) con-
sidering gi,v and θv as constants. When we consider gi,n and θn

as constants, Eq. (18) can be interpreted as an expectation oper-
ation. Thus, we approximate the expectation using the sum op-
eration by sampling the probabilistic variable U that follows trun-
cated normal distribution. To be more precise, we obtain R ran-

1We added an index of the observed spectrum i because the shape of the
PDFs are different from frame to frame here.

dom values (Ui,1,f , · · · , Ui,r,f , · · · , Ui,R,f ), which have the nor-
mal distributionN (U ; μn,f +gi,n, σ2

n,f ) and lies within the interval
(−∞, yi(f)). The objective function L can be approximated as

L≈
Z IX

i=1

log
RX

r=1

πi,r,f

N (log(exp(yi(f)) − exp(Ui,r,f ))
; μv,f,i + gi,v, σ2

v,f ) (20)

πi,r,f=
exp(yi(f))

(exp(yi(f)) − exp(Ui,r,f )) Cyi(f),i,fR
(21)

Cy,i,f=

Z y

−∞
N (U ; μn,f + gi,n, σ2

n,f )dU (22)

It should be noted that πi,r,f and log(exp(yi(f)) − exp(Ui,r,f ))
become constants if gi,n and θn are constants, and we can thus esti-
mate gi,v and θv by using Eq. (20). Similar to Eq. (18), gi,n and θn

can be updated in by considering gi,v and θv as consonants.

3.3. An EM-like method to optimize a logarithm of a sum

However, Eq. (20) is the shape of logarithm of a sum, which is
known to be difficult to maximize directly. Thus, we maximize Eq.
(20) by an iterative method resembling the EM algorithm. Hereafter,
parameters to be estimated are denoted as λ = {gi,v, θv} for con-
venience and λ′ represents the updated parameters in the previous
iteration. First, we introduce new variables as

zi,r,f=
πi,r,fψi,r,fPR

r′=1 πi,r′,fψi, r′, f
(23)

ψi,r,f=N (log(exp(yi(f)) − exp(Ui,r,f ))
; μv,f,i + gi,v, σ2

v,f ) (24)
and write zi,r,f calculated by using λ′ as z′

i,r,f . L can be maximized
by iterating the following two steps: (i) estimate λ that maximizes a
new objective function Q1(λ|λ′),

Q1(λ|λ′)=
Z IX

i=1

RX
r=1

z′
i,r,f log πi,r,f

N (log(exp(yi(f)) − exp(Ui,r,f ));
μv,f,i + gi,v, σ2

v,f )df (25)
and (ii) calculate zi,r,f using the estimated λ.

Since the term πi,r,f in Eq. (25) is irrelevant to the maximization
of Q1(λ|λ′), we can use new objective function Q2(λ|λ′),

Q2(λ|λ′)=
Z IX

i=1

RX
r=1

z′
i,r,f

logN (log(exp(yi(f)) − exp(Ui,r,f ))
; μv,f,i + gi,v, σ2

v,f )df (26)
instead ofQ1(λ|λ′). Finally, sinceQ2 follows the same form as Eq.
(14) in Sec 2.2.2, we can maximize Q2 by using the EM algorithm
in the same manner as the template estimation from a monophonic
singing voice.

4. EXPERIMENTS

We conducted experiments on phoneme recognition using 10
Japanese songs performed by 6 singers (3 male, 3 female), taken
from the “RWC Music Database: Popular Music” (RWC-MDB-P-
2001) [13]. The target phonemes were all 5 Japanese vowels; /a/, /i/,
/u/, /e/, and /o/. We conducted a 6 fold cross validation; that is, when
we evaluated a song of a specific singer, the vocal and noise tem-
plates (we call them phoneme model) were trained using songs from
the other 5 singers. We used a manually annotated phoneme label
and F0 annotation of the songs for both training data and ground-
truth. Accuracy for both phoneme estimation and F0 estimation is
defined as the ratio of the number of frames that are correctly esti-
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Table 1. Experimental results for concurrent estimation of
phonemes and F0 (%).

Baseline W-PST Extended W-PST
Song∗ Phoneme F0 Phoneme F0 Phoneme F0
No. 4 31.1 62.6 73.5 58.9 70.2 55.4
No. 11 56.5 65.6 57.6 71.5 57.4 71.6
No. 9 47.5 65.5 43.4 43.3 44.0 43.2
No. 12 62.8 76.8 63.9 77.6 63.5 77.3
No. 6 51.5 69.2 60.4 80.8 58.0 81.0
No. 2 69.5 71.6 68.5 86.3 68.5 85.0
No. 16 62.7 78.2 65.4 82.6 63.0 80.1
No. 7 60.0 73.8 67.2 82.7 65.4 79.6
No. 18 64.1 73.5 70.2 87.6 68.5 86.4
No. 14 44.1 79.1 42.3 82.0 42.0 82.5
Average 55.0 71.6 61.2 75.3 60.1 74.2
∗Song number of RWC-MDB-P-2001[13].

mated to the total number of frames. Only frames that involve the
target 5 vowels were used for calculating the accuracy.

We tested our method under the following 3 conditions.
(i) Baseline Use the F0 estimation method called PreFEst [14] and
the feature extraction method used in [15]; segregate the singing
voice based on the harmonic structure before extracting MFCCs,
ΔMFCCs, andΔPower and recognize them using the GMMs.
(ii) W-PST Use the method described in [1].
(iii) Extended W-PST Use the W-PST method with the new tem-
plate estimation algorithm from polyphonic singing voices proposed
in this paper.

In condition (i) , we used the Short Time Fourier Transform for
spectrum analysis and we set the number of mixtures of GMMs and
the number of dimensions of MFCCs to 12 and 32, respectively. The
data used for training GMMs were also segregated. In conditions (ii)
and (iii), we used the wavelet transform with the Gabor wavelet for
spectrum analysis, and set the number of mixtures of the MoE to 10.
In condition (ii), the vocal templates were trained using the vocal-
only tracks of the songs, and the noise template was trained using
a karaoke (without vocal) track of the songs based on the harmonic
structures. In condition (iii), the vocal and noise templates were
trained using polyphonic tracks of the songs.

The results are summarized in Table 1. We can see that the orig-
inal W-PST method (ii) increased the average accuracy by 6.2 points
for phoneme estimation and 3.7 points for F0 estimation compared
to baseline method (i). We confirmed that the W-PST method can
estimate F0 and phonemes better than the conventional method. We
can also see that the extended W-PST method (iii), though not as
accurate as the original W-PST method, is still more accurate than
baseline method (i) by 5.1 points for phoneme estimation and 2.6
points for F0 estimation. These results show that our method worked
well even if monophonic singing voices are not available for training
data.

Fig. 3 shows examples of a spectrum estimated from a mono-
phonic singing voice using our previous method described in 2.2.2
(Fig. 3 (a)), and a spectrum estimated from a singing voice in a poly-
phonic music using a method proposed in this paper (Fig. 3 (b)), and
a spectrum estimated from a singing voice segregated from a poly-
phonic music in using the accompaniment sound reduction method
proposed in [15] (Fig. 3 (c)). We can see the spectrum proposed by
the proposed method (b) is closer to the spectrum of optimal case
(a) than the spectrum directly estimated from a polyphonic music
without dealing with the accompaniment sound (c).

5. CONCLUSION

We described how to expand a method called W-PST [1] that
concurrently estimates the F0 and phonemes of a polyphonic singing
voice. Since the original W-PST method could train models only
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Fig. 3. An example of spectral estimation from a singing voice of a
polyphonic music. This example represents an envelope of phoneme
/i/ in song No. 7 in the RWC-MDB-P-2001 [13].

from monophonic singing voices, we made it possible to train mod-
els from polyphonic singing voices by developing a method for es-
timating spectral envelopes from polyphonic singing voices. We
conducted concurrent F0 and phoneme estimation experiments and
found that our method indicated improved performance compared
to the conventional method. In the future, we plan to extend this
method to deal with consonant phonemes and vocal activity detec-
tion. Future plan also includes integration with temporal modeling
methods such as the hidden Markov models (HMMs).
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[10] Jean-Louis Durrieu, Gaël Richard, and Bertrand David, “An iterative ap-
proach to monaural musical mixture de-soloing,” in Proc. ICASSP, 2009,
pp. 105–108.

[11] R. J. Jacobs, M.I Jordan, S. J. Nowlan, and G. E Hinton, “Adaptive mix-
tures of local experts,” Neural Computation, vol. 3, pp. 79–87, 1991.

[12] L Xu, M. I. Jordan, and G. E. Hinton, “An alternative model for mixtures
of experts,” Advances in Neural Information Processing Systems 7, pp.
633–640, 1994.

[13] Masataka Goto, Hiroki Hashiguchi, Takuichi Nishimura, and Ryuichi
Oka, “RWC Music Database: Popular, classical, and jazz music
databases,” in Proc. ISMIR, 2002, pp. 287–288.

[14] Masataka Goto, “A real-time music-scene-description system:
Predominant-f0 estimation for detecting melody and bass lines in
real-world audio signals,” Spe. Comm., vol. 43, no. 4, pp. 311–329,
2004.

[15] Hiromasa Fujihara, Masataka Goto, Tetsuro Kitahara, and Hiroshi G.
Okuno, “A modeling of singing voice robust to accompaniment sounds
and its application to singer identification and vocal-timbre-similarity
based music information retrieval,” IEEE Trans. Audio, Speech, Lan-
guage Process., vol. 18, no. 3, pp. 638–648, 2010.

368


