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ABSTRACT

This paper proposes a methodology to estimate the correlation model
between a pair of images that are given under the form of linear
measurements. We consider an image pair whose common objects
are relatively displaced due to the positioning of vision sensors. In
such scenarios the correlation model that relates the displacement
between the objects is effectively represented by a disparity image.
We consider a framework where each image is directly acquired and
compressed by projecting onto a random basis of lower dimension.
Given the linear measurements computed from the images we pro-
pose to estimate the underlying correlation model directlyin the
compressed domain without reconstructing the images that is usu-
ally a costly solution. We first show that the correlated images can
be efficiently related using a linear operator. Using this linear rela-
tionship between the images we derive the relationship between the
corresponding measurements in the compressed domain. The under-
lying correlation model is then built by solving a regularized energy
minimization problem. Experimental results show that the proposed
scheme estimates an accurate correlation model between theimages.
Also we show by experiments that the proposed scheme performs
competitively with the scheme that estimates the correlation model
from the reconstructed images.

1. INTRODUCTION

Distributed processing has recently found numerous applications in
vision sensor networks. In practice the vision sensors deployed in
such networks acquire the entire image before compression.With
the advent of compressed sensing it becomes possible to directly
acquire the compressed image in the form of random projections
[1, 2]. Such a scheme computes only few linear projections atthe en-
coder and thereby significantly reduces the computational cost and
the power requirements at the encoder. Given the visual information
in terms of linear measurements, one of the most important and chal-
lenging tasks in distributed processing is to estimate the correlation
between the signals or images captured by different sensors, so that
the information can be efficiently processed, coded or rendered. Fur-
thermore in applications like detection or rendering it is sufficient to
estimate only the correlation model and the explicit reconstruction of
images is not required. This motivates us to estimate the correlation
model directly from the linear measurements without reconstructing
the references images.

The concept of random projections in distributed scenarioshas
been previously studied in [3] where three joint sparsity models are
designed and used in joint signal reconstruction algorithms. These
simple joint sparsity models are however not ideal for multi-view
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images or video sequences as the correlation model in such scenar-
ios is usually given in the form of disparity or motion vectors. Later
the concept of random projections has been applied to distributed
video coding [4, 5] or multiview coding [6] in efforts to reduce the
complexity of the encoding stage. However these schemes estimate
correlation models from the reconstructed images and not directly
from the linear measurements. In other words, the referenceim-
ages are first reconstructed independently from linear measurements
by solving anl2 − l1 optimization problem, and then a correlation
model is estimated from the reconstructed images. In our previous
work [7] we have also proposed a methodology to estimate the cor-
relation model from a reference image and highly compressedlinear
measurements. Unfortunately, reconstructing the reference images
based on anl2 − l1 optimization problem is highly complex. Hence
we propose to estimate the correlation model directly from the linear
measurements without any intermediate reconstruction stage.

In this paper we consider an image pair captured by a stereo
camera. In such a scenario the common objects between the images
are displaced due to change in view point and the correlationmodel
is usually given in the form of a dense disparity image. We propose
to estimate this correlation model directly from the linearmeasure-
ments in a regularized energy minimization framework. The data
cost function assigns a particular disparity value to a pixel which
best agrees with the linear measurements. Then a smoothnesscost
function penalizes the disparity value for the adjacent pixels so that
they stay as close as possible, except at discontinuities. Experimental
results show that the proposed scheme is able to efficiently estimate
the correlation model between the images. Also the performance of
the proposed scheme closely matches the performance of the scheme
that estimates a disparity from reconstructed images wherethe im-
ages are reconstructed from the linear measurements by solving an
l2 − l1 optimization problem. Thus the proposed scheme provides
an interesting solution for distributed processing in vision sensors
which estimates the correlation model directly in the compressed
domain from low complexity linear measurements.

2. PROPOSED FRAMEWORK

We consider a pair of imageI1 andI2 that represent the same scene
taken at different viewpoints, with resolutionN1 × N2. Without
loss of generality, we assume that the imagesI1 andI2 are rectified
so that the disparity estimation problem reduces to an one dimen-
sional search problem. As the images are rectified we proposeto
compute the linear measurements across rows in order to facilitate
the matching process, i.e., we consider each row as one block(with
size1×N2), and the measurements are independently taken for each
block. Such block-based sampling scheme is commonly used inthe
literature for easy handling and sampling speed-up [8]. In more de-



tails, letI1,k andI2,k represent thekth row of I1 andI2 respectively,
andY1,k andY2,k represent the linear measurements computed from
I1,k andI2,k using a measurement matricesφk

1 andφk
2 respectively.

The measurementsY1,k andY2,k are computed as,

Y1,k = φ
k
1 I

T
1,k, ∀k = 1, 2 · · ·N1, (1)

Y2,k = φ
k
2 I

T
2,k, ∀k = 1, 2 · · ·N1,

where(.)T denotes the transpose operator. It should be noted that
φk
1 andφk

2 are of dimensionsM ×N2 with M << N2.
Now we describe how to relate the imagesI1 andI2 using a lin-

ear operator. LetD = [D1, D2, ...., DN1
]T be a disparity image that

describes the underlying correlation between the images, whereDk

represents thekth row of D. As the images are correlated through
the displacement of scene objects it is likely that each pixel z =
(x, y) in the first image might have shifted toz′ = (x+D(x, y), y)
in the second image with the disparityD(x, y). Then the imagesI1
andI2 can be simply related by a linear operatorTD which changes
the coordinate system from(x, y) to (x+D(x, y), y), i.e.,

I2(x, y) = TD{I1(x, y)} (2)

I2(x, y) = I1(x+D(x, y), y).

Eq. (2) can be extended to describe the relationship betweenthekth

row of the imagesI1,k andI2,k. It is easy to check that the rowsI1,k
andI2,k can be related usingDk as,

I2,k = I1,k+Dk
, ∀k = 1, 2 · · ·N1. (3)

For mathematical convenience we represent Eq. (3) as a linear sys-
tem that relates the rowsI1,k andI2,k using a matrixAk. Mathe-
matically it is given as,

I
T
2,k = A

k
I
T
1,k, ∀k = 1, 2 · · ·N1, (4)

where the dimensions ofAk is N2 × N2. The entries of the matrix
Ak are given by

A
k(x,min(x+ β,N2)) =

{

1 Dk(x) = β

0 otherwise
(5)

whereDk(x) represents the disparity value at thexth location in the
kth row, i.e., the value at locationD(k, x). If the value ofx+ β >

N2 (which might happen at the boundaries) we replacex+ y = N2

so that the dimensions of the matrixAk is N2 × N2. It is easy to
check that the matrixAk formed using Eq. (5) contains only one1
in each row. For example, the matrixAk corresponding toDk =
[2 2 1 1] is given by

A
k =







0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1






. (6)

Since the matrixAk contains only one1 in each row it is evident
from Eq. (4) thatI2,k(i) = I1,k(j) if Ak(i, j) = 1. Thus it is
clear that the matrixAk shifts the pixels inI1,k by its correspond-
ing disparity vectorDk to form I2,k. In the remaining section we
focus on deriving the relationship between the measurements Y1 =
[Y1,1, Y1,2, ...., Y1,N1

]T andY2 = [Y2,1, Y2,2, ...., Y2,N1
]T when the

imagesI1 andI2 are related linearly as given in Eq. (4).
Without loss of generality we assume that the measurements

Y1,k andY2,k are related by a linear operatorBk, i.e.,

Y2,k = B
k
Y1,k, ∀k = 1, 2 · · ·N1, (7)

where the dimensions ofBk is M × M . In fact one can show that
any two vectorsY1,k, Y2,k ∈ R

M can be related using an opera-
tor Bk whenY1,k 6= 0. However this linear operatorBk is a very
generic one that is independent of the operatorAk that shifts the pix-
els betweenIk1 andIk2 . We thus derive the relationship between the
matrixesBk andAk which is further used to derive the relationship
between the measurementsY1 andY2. Pre-multiplying Eq. (1) by
φk
2 on both sides results in

Y2,k = φ
k
2I

T
2,k = φ

k
2A

k
I
T
1,k, ∀k = 1, 2 · · ·N1. (8)

Using Eq. (1), Eq. (7) can be rewritten as

Y2,k = B
k
Y1,k = B

k
φ
k
1I

T
1,k, ∀k = 1, 2 · · ·N1. (9)

By equating Eq. (8) and Eq. (9) the matrixesAk andBk can be
related as,

B
k
φ
k
1 = φ

k
2A

k
, ∀k = 1, 2 · · ·N1. (10)

The above Eq. (10) forms an over-determined system of linearequa-
tions withM2 unknowns (in matrixBk) andM × N2 equations.
In such scenarios it is well known that the bestB̂k that minimizes
‖Bkφk

1 − φk
2A

k‖2 is given by

B̂
k = φ

k
2A

k
φ
k
1

†
, ∀k = 1, 2 · · ·N1. (11)

where† denotes the pseudo-inverse operator. Using this result in
Eq. (7) we get

Y2,k ≈ φ
k
2A

k
φ
k
1

†
Y1,k, ∀k = 1, 2 · · ·N1. (12)

We thus show that if thekth row in the imagesI1 andI2 are related
linearly as given in Eq. (4) then the corresponding measurements
Y1,k andY2,k can be related linearly as given in Eq. (12). In the
next section we describe the proposed methodology of estimating
the disparity imageD directly from the linear measurements.

3. DISPARITY ESTIMATION FROM LINEAR
MEASUREMENTS

The objective of the dense disparity estimation is to assigna dis-
parity value to each pixelz = (x, y) taken from a finite setL =
{l1, l2, ...lmax}. In other words our aim is to find a mappingf that
assigns a disparity valueD(x, y) ∈ L to each pixelz such that the
mappingf is piecewise smooth and also consistent with the given
measurement vectorsY1 andY2. We propose to compute the optimal
mappingf∗ in an regularized energy minimization framework where
the energyE(f) is composed of a data termEd(f) and a smooth-
ness termEs(f). By balancing the data and smoothness terms with
λ ≥ 0 the energy model can be represented as,

E(f) = Ed(f) + λEs(f). (13)

The optimal mappingf∗ can be found out by minimizing the energy
functionE(f), i.e.,

f
∗ = argmin

f
E(f). (14)

The smoothness cost measures the penalty of assigning different
labels or disparity to the adjacent pixels. It is computed using

Es =
∑

z,z′∈N

V
z,z′ (15)



(a) (b)

Fig. 1. Venus dataset: Computed disparity mapD at a measurement rate (a)
0.2 (b) 0.7. The disparity error w.r.t. ground truth is found to be41% and
10% respectively.

wherez, z′ are the pixels in the usual four pixel neighbourhoodN
and the termV

z,z′ is given as,

V
z,z′ = min(|D(z) −D(z′)|,K) (16)

whereK sets an upper level to the penalty that helps to preserve the
discontinuities [9].

The data cost function measures the cost of assigning a partic-
ular label to the pixel based on the observationsY1 andY2. In the
literature the disparity is usually estimated from the imagesI1 and
I2 and the most commonly used data cost function is

Ed = ‖I2(x, y)− I1(x+D(x, y), y)‖2

=

N1
∑

k=1

‖IT2,k −A
k
I
T
1,k‖2 (17)

where Eq. (17) follows from Eq. (4). In our work we are interested
in estimating the disparity directly from the linear measurements. In
the previous section we have shown that if the images are related lin-
early then the relationship between the corresponding measurements
computed from the images remains linear as the sensing matrix is
linear. Using Eq. (4) and Eq. (12) one can show that the data cost
function relating the measurementsY1 andY2 as,

Ed =

N1
∑

k=1

‖IT2,k −A
k
I
T
1,k‖2

≈

N1
∑

k=1

‖Y2,k − φ
k
2A

k
φ
k
1

†
Y1,k‖2. (18)

Combining Eq. (18) and Eq. (15) the proposed energy model is given
as,

E =

N1
∑

k=1

‖Y2,k − φ
k
2A

k
φ
k
1

†
Y1,k‖2 + λ

∑

z,z′∈N

V
z,z′ . (19)

The dense disparity imageD is estimated by minimizing the energy
in Eq. (19), i.e., solving the optimization problem in Eq. (14). Due to
the non-convexity nature of this problem the solution to Eq.(14) can
be typically found by using strong optimization techniquesbased on
graph-cuts or belief propagation.

4. EXPERIMENTAL RESULTS

We evaluate the performance of our scheme on two natural datasets,
Tsukuba and Venus1. The random projections are computed using a

1available in http://vision.middlebury.edu/stereo/data/scenes2001/

(a) mse: 205 (b) mse:1221

Fig. 2. PSNR comparison of the predicted imageÎ2 w.r.t. I2 andI1 at a
measurement rate0.2. The disparity map shown in Fig. 1(a) is used to predict
the imageÎ2. (a)1 − |Î2 − I2| (b) 1 − |Î2 − I1|. The error is inverted so
that the white pixels correspond to no error.

scrambled Fourier transform where the scrambled operator is a diag-
onal matrix with entries±1 (taken from an i.i.d. Bernoulli random
variable) [8]. We sampled both the images using the same measure-
ment rate. The measurement rate is defined as the ratio between the
number of computed measurementsMN1 and the dimensions of the
imageN1N2. The disparity mapD is estimated by solving Eq. (14)
usingα-expansion mode in graph-cuts [9, 10].

We first show the performance of the scheme when the mea-
surement matrixes are different for both images. Fig. 1(a) shows the
computed disparity map from a measurement rate0.2 from each im-
age (total rate is0.4) for Venus dataset. Comparing with the ground
truth image we observe that the result in Fig. 1(a) corresponds to a
coarse approximation of the ground truth disparity image. Quanti-
tatively the disparity error w.r.t. the ground truth is found out to be
41% when measured as the percentage of pixels with absolute error
greater than one. When the measurement rate increases the quality
of the disparity map is better as expected. For example, the estimated
disparity map for a measurement rate0.7 is shown in Fig. 1(b), and
the corresponding disparity error is found to be10%. When such a
coarse disparity mapD is used for image prediction the predicted
imageÎ2 is closer toI2 thanI1 (see Fig. 2). We see in Fig. 2(a) that
the prediction is accurate in the low frequency and smooth regions,
and the prediction error is oriented mostly along the edges.

Fig. 3 shows the PSNR of the warped imageÎ2 at various mea-
surement rates for both datasets. From the plot we see that the quality
of the predicted imagêI2 increases w.r.t. the measurement rate as it
provides more information to estimate the disparity image.Further-
more the quality of the predicted image saturates at rates> 0.5. It
indicates that the quality of the disparity map reaches the saturation
point and that cannot be further improved. In other words, the tex-
ture and high frequency components cannot be efficiently predicted
by disparity compensation. While carrying out the experiments we
also notice that the quality of the predicted imageÎ2 is improved
(by 6 - 8 dB on the datasets) by activating the smoothness costin
the optimization problem (i.e.,λ 6= 0 in Eq. (19)). We then carry
out experiments using a same set of measurement matrix. Fig.3
compares the PSNR quality of the predicted imageÎ2 w.r.t. the one
predicted using different sets of measurement matrixes. Itis clear
that the prediction accuracy improves when different matrixes are
used, as this brings more information from both images in order to
solve the correspondence problem.

We then compare our results to a scheme that first reconstructs
the images independently before estimating the disparity map. The
images are reconstructed independently from the corresponding
measurements by solving a convex optimization problem. We de-
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Fig. 3. Evolution of the quality ofÎ2 at various measurement rate. The
benefit of using different sets of measurement matrixes is also illustrated.

note this methodology as disparity from reconstructed images (DFR)
in this paper. We tried out two different reconstruction methodolo-
gies. (1) DFR-sparsity: minimizing thel1 norm of the sparse coeffi-
cients assuming that the image is sparse in a particular orthonormal
basis (e.g., Wavelet). This problem is solved using GPSR [11];
(2) DFR-TV: minimizing the TV norm of the reconstructed images
(solved usingl1 − Magic 2). After reconstructing the images the
disparity map is estimated by solving Eq. (14) with the data cost and
smoothness cost given in Eq. (17) and Eq. (15) respectively.Fig. 4
shows the comparison of the proposed scheme w.r.t. DFR-sparsity
and DFR-TV schemes for the Tsukuba dataset. It is clear that we
match the image prediction quality of the DFR-sparsity scheme (see
Fig. 4). At rates smaller than0.1 our scheme performs better than
the DFR-sparsity scheme, as the poor image reconstruction quality
in the DFR-sparsity scheme leads to a bad estimation of disparity
map. On the other hand DFR-TV scheme outperforms (max. 3 dB)
our scheme at low rates due to good image reconstruction quality.
However, the image prediction quality is almost the same forall
the three schemes at rates> 0.5. We observe similar results on the
Venus dataset. It should be noted that computational cost toestimate
the correlation model directly from the measurements or from the
references (reconstructed) images is approximately the same. There-
fore when compared to the DFR scheme our scheme saves the image
reconstruction cost; this corresponds to the cost needed tosolve the
l2− l1 or l2−TV optimization problem. Thus the proposed scheme
significantly reduces overall complexity at the joint decoder when
compared to the DFR schemes. In addition to lower complexityit is
shown to work reasonably well in the low rate and as accurate as the
DFR-TV scheme at high rate.

5. CONCLUSIONS

In this paper we propose a scheme to estimate the disparity image
between a pair of images that are directly acquired based on ran-
dom projections. We show that the disparity between the images
can be efficiently represented using a linear operator and using this
we derive a regularized cost function to estimate the disparity im-
age directly in the compressed domain. Experimental results show
that the proposed scheme gives a good estimation of the disparity
image, especially when the images are sampled with different mea-
surement matrixes. Finally we show that the performance of the pro-
posed scheme does not degrade significantly w.r.t. the DFR-sparsity

2available in http://www.acm.caltech.edu/l1magic/
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Fig. 4. Tsukuba dataset: Comparison of the predicted image qualityÎ2

between the proposed, DFR-sparsity and DFR-TV schemes.

scheme. Thus the proposed scheme builds the correlation model di-
rectly in the compressed domain without any intermediate image re-
construction and thereby reduces the overall complexity atthe de-
coder comparing to the DFR schemes.
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