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ABSTRACT

This paper proposes a methodology to estimate the cooelatodel
between a pair of images that are given under the form of dine

are relatively displaced due to the positioning of visionsegs. In
such scenarios the correlation model that relates theadispient
between the objects is effectively represented by a digpianage.
We consider a framework where each image is directly acduing
compressed by projecting onto a random basis of lower diloens

Given the linear measurements computed from the images eve pr

pose to estimate the underlying correlation model direutlyhe
compressed domain without reconstructing the images shasu-
ally a costly solution. We first show that the correlated iesmgan
be efficiently related using a linear operator. Using thigdir rela-
tionship between the images we derive the relationship éatvthe
corresponding measurements in the compressed domain.ntbe-u
lying correlation model is then built by solving a regulatizenergy
minimization problem. Experimental results show that treppsed
scheme estimates an accurate correlation model betweéndges.

a
measurements. We consider an image pair whose common Sijecyt'

images or video sequences as the correlation model in sedaisc
ios is usually given in the form of disparity or motion vecoLater
the concept of random projections has been applied to lolisérd
ideo coding [4, 5] or multiview coding [6] in efforts to rede the
complexity of the encoding stage. However these schemizsagst
correlation models from the reconstructed images and metttly
from the linear measurements. In other words, the referanee
ages are first reconstructed independently from linear uneasents
by solving anl> — I; optimization problem, and then a correlation
model is estimated from the reconstructed images. In owiqus
work [7] we have also proposed a methodology to estimatedhe c
relation model from a reference image and highly comprebsedr
measurements. Unfortunately, reconstructing the referémages
based on af, — [; optimization problem is highly complex. Hence
we propose to estimate the correlation model directly froenlinear
measurements without any intermediate reconstructigesta

In this paper we consider an image pair captured by a stereo
camera. In such a scenario the common objects between tigesma
are displaced due to change in view point and the correlatiodel

Also we show by experiments that the proposed scheme pesforniS usually given in the form of a dense disparity image. Weppse

competitively with the scheme that estimates the cor@iatnodel
from the reconstructed images.

1. INTRODUCTION

Distributed processing has recently found numerous agipdics in
vision sensor networks. In practice the vision sensorsayepl in
such networks acquire the entire image before compresaidith
the advent of compressed sensing it becomes possible tctigire
acquire the compressed image in the form of random projextio
[1, 2]. Such a scheme computes only few linear projectiotiseatn-
coder and thereby significantly reduces the computatioost and
the power requirements at the encoder. Given the visuainrgtion
in terms of linear measurements, one of the most importahthal-
lenging tasks in distributed processing is to estimate tneetation
between the signals or images captured by different sersothat
the information can be efficiently processed, coded or nexttid-ur-
thermore in applications like detection or rendering ituiffisient to
estimate only the correlation model and the explicit retmiesion of
images is not required. This motivates us to estimate theledion
model directly from the linear measurements without retoiing
the references images.

The concept of random projections in distributed scendrass
been previously studied in [3] where three joint sparsitydeis are
designed and used in joint signal reconstruction algoithithese
simple joint sparsity models are however not ideal for rauikiv
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to estimate this correlation model directly from the linezgasure-
ments in a regularized energy minimization framework. Thead
cost function assigns a particular disparity value to alpieich
best agrees with the linear measurements. Then a smoottosss
function penalizes the disparity value for the adjacenelgiso that
they stay as close as possible, except at discontinuitiqeeriinental
results show that the proposed scheme is able to efficiestilypate
the correlation model between the images. Also the perfoomaf
the proposed scheme closely matches the performance afrtems
that estimates a disparity from reconstructed images wiherém-
ages are reconstructed from the linear measurements hingala
l2 — 11 optimization problem. Thus the proposed scheme provides
an interesting solution for distributed processing inamssensors
which estimates the correlation model directly in the cossped
domain from low complexity linear measurements.

2. PROPOSED FRAMEWORK

We consider a pair of imagh andI- that represent the same scene
taken at different viewpoints, with resolutia; x N». Without

loss of generality, we assume that the imageand !, are rectified

so that the disparity estimation problem reduces to an ome ki
sional search problem. As the images are rectified we profmse
compute the linear measurements across rows in order tideei

the matching process, i.e., we consider each row as one bhattk
sizel x N3), and the measurements are independently taken for each
block. Such block-based sampling scheme is commonly usétin
literature for easy handling and sampling speed-up [8]. tmetde-



tails, letl; » and ., represent thé!” row of I; and/, respectively, where the dimensions d8* is M x M. In fact one can show that
andY; , andYs ; represent the linear measurements computed fronany two vectorsYi , Yo, € RM™ can be related using an opera-
I, and I, using a measurement matricgs and¢5 respectively.  tor B* whenY; ;, # 0. However this linear operatdg” is a very

The measuremenis, , andY> i are computed as, generic one that is independent of the operatbthat shifts the pix-
A els betweerff andI5. We thus derive the relationship between the
Yip=0¢1 ik, Vk=1,2---Np, (1) matrixesB* and A* which is further used to derive the relationship

Yor = o IQT,k, Vk=1,2--- N1, between the measuremerits andY>. Pre-multiplying Eq. (1) by

¢% on both sides results in
where(.)” denotes the transpose operator. It should be noted that o -
&% and@5 are of dimensiong/ x Ny with M << Nb. Yoir = ¢olop = ¢ A", Vk=1,2--Ni. (8)
Now we describe how to relate the imagesand/, using a lin- ) .
ear operator. Leb = [Dy, D, ..., Dy,]” be adisparity image that USing Eq. (1), Eq. (7) can be rewritten as
describes the underlying correlation between the imagksreDy, © b kT
represents thé*" row of D. As the images are correlated through Yor =B Yip=B"¢1lik, V=12 N. ©
the displacement of scene objects it is likely that eachlpixe=

. . &
(z, y) in the first image might have shifted # — (z + D(z, 1), y) By equating Eq. (8) and Eq. (9) the matrixd$ and B* can be

in the second image with the disparif}(z, y). Then the image$; related as, & .k 5 ik
and/: can be simply related by a linear operaigs which changes B ¢1 =¢,A%, Vk=1,2---N1. (10)
the coordinate system frofw, y) to (z + D(z,y),y), i.e., The above Eqg. (10) forms an over-determined system of liegaa-
tions with M2 unknowns (in matrixB*) and M x N, equations.
L(w,y) =To{h(z,y)} 11 such scenarios it is well known that the bét that minimizes

Ly(z,y) = Li(z + D(z,y),y). | B* ¢t — ¢5 A¥ |2 is given by

Eq. (2) can be extended to describe the relationship betitesi™ ~ b ik okt
BF = kARG wE=1,2.. Ny (12)

row of the imaged, ;, and/, ;. Itis easy to check that the rows

and/,  can be related using as, wheret denotes the pseudo-inverse operator. Using this result in

Iy =i kyp,, VE=1,2---Ny. (3) Eq. (7) we get
For mathematical convenience we represent Eq. (3) as a kysa Yo i A ¢’§Ak¢’fTY1 v, Vk=1,2---N. (12)
tem that relates the rowk , and I using a matrixA*. Mathe- ' " ’
matically it is given as, We thus show that if thé*” row in the imaged; and I, are related
T kT - linearly as given in Eq. (4) then the corresponding measengsn
Ly =A" Iy, VE=1,2---Ny, ) Y1, andYs, can be related linearly as given in Eq. (12). In the
where the dimensions of* is Nz x Na. The entries of the matrix Next section we describe the proposed methodology of etitigna
A* are given by the disparity imageD directly from the linear measurements.
A¥(x,min(z + B, Na)) = { é D;'}E‘"”) =B (5) 3. DISPARITY ESTIMATION FROM LINEAR
otherwse MEASUREMENTS

whereD, () represents the disparity value at tH& location in the
k'™ row, i.e., the value at locatioP (k, ). If the value ofx 4+ 38 >
N> (which might happen at the boundaries) we replagey = N-
so that the dimensions of the matti¢ is N, x N. Itis easy to
check that the matrixd® formed using Eq. (5) contains only ore
in each row. For example, the matrik® corresponding td;, =
[221 1] is given by

The objective of the dense disparity estimation is to assigfis-
parity value to each pixet = (z,y) taken from a finite sef =
{l1,12, ...lmaz }. In other words our aim is to find a mappirfgthat
assigns a disparity valuB(z,y) € L to each pixel such that the
mapping f is piecewise smooth and also consistent with the given
measurement vectob§ andY>. We propose to compute the optimal
mappingf™ in an regularized energy minimization framework where

00 1 0 the energyE(f) is composed of a data terf,;(f) and a smooth-
X 00 0 1 ness termi; (f). By balancing the data and smoothness terms with
AT = o0 o0 1" (6) A > 0 the energy model can be represented as,
0 0 0 1

E(f) = Ea(f) + AEs(f). 13)
Since the matrixA® contains only ond in each row it is evident ) ) L
from Eq. (4) thatl, (i) = Ix(j) if A*(4,5) = 1. Thusitis  Theoptimal mapping™ can be found out by minimizing the energy
clear that the matrix4* shifts the pixels inl1 . by its correspond- ~ functionE(f), i.e.,
ing disparity vectorD,, to form I ;. In the remaining section we

focus on deriving the relationship between the measuresmént [ = arg mfin E(f). (14)
[Yi1,Yi2,...., Y15, )" andYz = [Ya,1, Y22, ...., Ya,n,]" when the
imagesl; and/, are related linearly as given in Eq. (4). The smoothness cost measures the penalty of assigningediffe

Without loss of generality we assume that the measuremenigbels or disparity to the adjacent pixels. It is computedgis
Y1, andYa,,, are related by a linear operatBr, i.e.,

Es - Vz,z/ (15)
)/Q,k :Bk Yl,k> Vk:1>2N1> (7) z,;f\f
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Fig. 1. Venus dataset: Computed disparity mat a measurement rate (a)
0.2 (b) 0.7. The disparity error w.r.t. ground truth is found to $&% and
10% respectively.

wherez, z’ are the pixels in the usual four pixel neighbourhotd
and the terni/, . is given as,

Ve = min(|D(z) — D(2)], K) (16)

(a) mse: 205 (b) mse:1221

Fig. 2. PSNR comparison of the predicted imaBew.r.t. I> andI; at a
measurement rate2. The disparity map shown in Fig. 1(a) is used to predict
the imagel>. (a)1 — |12 — Iz| (b) 1 — |I2 — I1]. The error is inverted so
that the white pixels correspond to no error.

scrambled Fourier transform where the scrambled opersitodiag-
onal matrix with entriest1 (taken from an i.i.d. Bernoulli random
variable) [8]. We sampled both the images using the sameureas

whereK’ sets an upper level to the penalty that helps to preserve thgient rate. The measurement rate is defined as the ratio bethee

discontinuities [9].

number of computed measuremenfsV; and the dimensions of the

The data cost function measures the cost of assigning @partijmage N, N,. The disparity mag is estimated by solving Eq. (14)

ular label to the pixel based on the observatidhsandY>. In the
literature the disparity is usually estimated from the ie®fy and
I> and the most commonly used data cost function is

Eq = |I2(z,y) — Li(z+ D(z,y),y)l2
Ny
= > ik — ALl 17)
k=1

where Eq. (17) follows from Eq. (4). In our work we are int¢ess
in estimating the disparity directly from the linear measuents. In
the previous section we have shown that if the images arecdia-
early then the relationship between the corresponding uneasnts
computed from the images remains linear as the sensingxnisitri

usinga-expansion mode in graph-cuts [9, 10].

We first show the performance of the scheme when the mea-
surement matrixes are different for both images. Fig. I{ajs the
computed disparity map from a measurement Ga2é¢rom each im-
age (total rate i9.4) for Venus dataset. Comparing with the ground
truth image we observe that the result in Fig. 1(a) corredpdo a
coarse approximation of the ground truth disparity imageari-
tatively the disparity error w.r.t. the ground truth is fauout to be
41% when measured as the percentage of pixels with absolute erro
greater than one. When the measurement rate increasesdtity qu
of the disparity map is better as expected. For example stivaated
disparity map for a measurement rat& is shown in Fig. 1(b), and
the corresponding disparity error is found to1#¥%. When such a

linear. Using Eq. (4) and Eq. (12) one can show that the datt cocoarse disparity map is used for image prediction the predicted

function relating the measurementsandY> as,

Ny
Eq = ZIIbT,k—AkIlT,kIh
k=1
Ny .
~ ) ([Yar — @5 ARGY Vi ko (18)
k=1

Combining Eq. (18) and Eq. (15) the proposed energy modélésg
as,

Ny
;
E=> |[Yor — 5 A% Yiglla+ X D> Voo (19)
k=1 z,2’ €N

The dense disparity image is estimated by minimizing the energy
in Eq. (19), i.e., solving the optimization problem in E¢4{1Due to
the non-convexity nature of this problem the solution to #4) can
be typically found by using strong optimization technigbased on
graph-cuts or belief propagation.

4. EXPERIMENTAL RESULTS

We evaluate the performance of our scheme on two naturadetata
Tsukuba and Venus The random projections are computed using

Lavailable in http://vision.middlebury.edu/stereo/dstanes2001/

a.

imagel- is closer tol, thanI; (see Fig. 2). We see in Fig. 2(a) that
the prediction is accurate in the low frequency and smoagions,
and the prediction error is oriented mostly along the edges.

Fig. 3 shows the PSNR of the warped imageat various mea-
surement rates for both datasets. From the plot we see thatitity
of the predicted imagé, increases w.r.t. the measurement rate as it
provides more information to estimate the disparity imdgarther-
more the quality of the predicted image saturates at rat@ss. It
indicates that the quality of the disparity map reaches #teration
point and that cannot be further improved. In other words,téx-
ture and high frequency components cannot be efficientlgfipiexd
by disparity compensation. While carrying out the experitaave
also notice that the quality of the predicted imaleis improved
(by 6 - 8 dB on the datasets) by activating the smoothnessirtost
the optimization problem (i.e) # 0 in Eqg. (19)). We then carry
out experiments using a same set of measurement matrix. 3Fig.
compares the PSNR quality of the predicted imagev.r.t. the one
predicted using different sets of measurement matrixegs diear
that the prediction accuracy improves when different magriare
used, as this brings more information from both images ireotd
solve the correspondence problem.

We then compare our results to a scheme that first reconstruct
the images independently before estimating the disparity.nThe
images are reconstructed independently from the correspgn
measurements by solving a convex optimization problem. e d
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Fig. 3. Evolution of the quality off at various measurement rate. The Fig. 4. Tsukuba dataset: Comparison of the predicted image qulity

benefit of using different sets of measurement matrixessis idlistrated.

note this methodology as disparity from reconstructed esg®FR)

in this paper. We tried out two different reconstruction neetolo-
gies. (1) DFR-sparsity: minimizing thHe norm of the sparse coeffi-
cients assuming that the image is sparse in a particulaomotimal
basis (e.g., Wavelet). This problem is solved using GPSR; [11
(2) DFR-TV: minimizing the TV norm of the reconstructed inesg
(solved using: — Magic 2). After reconstructing the images the
disparity map is estimated by solving Eq. (14) with the daist and
smoothness cost given in Eq. (17) and Eq. (15) respectivéty. 4
shows the comparison of the proposed scheme w.r.t. DFRsigpar
and DFR-TV schemes for the Tsukuba dataset. It is clear tleat w
match the image prediction quality of the DFR-sparsity sohésee
Fig. 4). At rates smaller thad.1 our scheme performs better than
the DFR-sparsity scheme, as the poor image reconstructialityy

in the DFR-sparsity scheme leads to a bad estimation of tiigpa

map. On the other hand DFR-TV scheme outperforms (max. 3 dB)

our scheme at low rates due to good image reconstructiorityjual
However, the image prediction quality is almost the sameafbr
the three schemes at rates0.5. We observe similar results on the
Venus dataset. It should be noted that computational cestimate
the correlation model directly from the measurements amftbe
references (reconstructed) images is approximately tine s&here-

fore when compared to the DFR scheme our scheme saves the imag [6]

reconstruction cost; this corresponds to the cost needsalte the

lo —11 orly — TV optimization problem. Thus the proposed scheme
significantly reduces overall complexity at the joint deeo#hen
compared to the DFR schemes. In addition to lower compléxisy
shown to work reasonably well in the low rate and as accusateea
DFR-TV scheme at high rate.

5. CONCLUSIONS

In this paper we propose a scheme to estimate the disparitgem
between a pair of images that are directly acquired basedion r
dom projections. We show that the disparity between the @mag
can be efficiently represented using a linear operator aimg) tisis
we derive a regularized cost function to estimate the digpan-
age directly in the compressed domain. Experimental reshibw
that the proposed scheme gives a good estimation of theritispa
image, especially when the images are sampled with diffenea-
surement matrixes. Finally we show that the performanckepto-
posed scheme does not degrade significantly w.r.t. the [pERsisy

2available in http://www.acm.caltech.edu/lLmagic/

between the proposed, DFR-sparsity and DFR-TV schemes.

scheme. Thus the proposed scheme builds the correlatioal miad
rectly in the compressed domain without any intermediatgere-
construction and thereby reduces the overall complexithatde-
coder comparing to the DFR schemes.
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