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ABSTRACT

We consider the problem of classification of a pattern from multiple
compressed observations that are collected in a sensor network. In
particular, we exploit the properties of random projections in generic
sensor devices and we take some first steps in introducing linear di-
mensionality reduction techniques in the compressed domain. We
design a classification framework that consists in embedding the low
dimensional classification space given by classical linear dimension-
ality reduction techniques in the compressed domain. The measure-
ments of the multiple observations are then projected onto the new
classification subspace and are finally aggregated in order to reach a
classification decision. Simulation results verify the effectiveness of
our scheme and illustrate that compressed measurements combined
with information diversity lead to efficient dimensionality reduction
in simple sensing architectures.

Index Terms— Random projections, dimensionality reduction,
multiple observations.

1. INTRODUCTION

The tremendous increase in the amount of data captured by different
sensing systems has stimulated a lot of research toward the design
of effective methods that could identify the relevant information in
complex data. Due to this redundancy, the problem of classification
of multiple visual observations has started to receive more and more
attention. These multiple observations are typically collected by a
network of vision sensors, where each sensor observes the same sig-
nal from different viewpoints or at different time instants or even
under different noise conditions. The problem in such settings con-
sists in finding the correct class of the underlying signal from a set
of candidate classes.

Dimensionality reduction techniques are widely used for solving
classification problems. It has been shown that techniques like PCA,
LDA, ICA [1] lead to a discriminative representation of the signal
based on its underlying structure. The new low dimensional repre-
sentation emphasizes the most meaningful information in the signal
and leads to improved classification accuracy. In sensor networks,
one may however not have access to the complete signals but only
to compressed versions. For example, the signals can be given under
the form of random projections or compressed measurements. Such
measurements have been shown to preserve the structure of the orig-
inal signal with reduced sensing costs [2], so that they can be used
for classification instead of the original signals. Furthermore, when
multiple compressed versions of the same signal are available, the

amount of information about the signal also increases which usually
leads to better analysis or classification.

In this work, we aim at extending the dimensionality reduction
properties of random projections by combining them with classi-
cal dimensionality reduction techniques in a multiple observations
framework. In particular, we focus on the design of a smart fusion
center that reaches a global classification decision by aggregating
multiple noisy measurements of the same signal while avoiding the
expensive cost of signal reconstruction. We extract more information
about the signal by considering that the observations are captured
with different sensing matrices. Our framework is based on embed-
ding the low dimensional space obtained by linear dimensionality
reduction techniques in the compressed domain. The coefficients
of the multiple measurements in the embedded subspace are used to
classify the signal with a Nearest Neighbor (NN) classifier. We illus-
trate the performance of the proposed scheme in image classification
and we confirm that linear dimensionality reduction techniques in-
crease the classification accuracy even when the signals are given
with compressed measurements.

The use of random projections for dimensionality reduction has
received considerable interest over the past few years. The authors
in [3] compare random projection and PCA using different machine
learning methods and confirm that random projections are extremely
attractive mainly due to their computational advantages. Moreover,
random projections have been applied on various types of compres-
sive signal processing problems [4] including compressive classifi-
cation [5–7] and face recognition [8]. However, these works usually
assume that the original signal space guarantees good classification,
which is not always the case. The combination of both linear dimen-
sionality reduction (which leads to more discriminant features) and
compressed measurements (which provide simple and effective sens-
ing) is expected to offer improved classification performance with a
reduced number of measurements.

2. COMPRESSED CLASSIFICATION FRAMEWORK

We examine the problem of classification of multiple compressed
observations obtained under different noisy conditions in a sensor
network as illustrated in Fig.1. We consider a network that con-
sists of S generic sensors, each of which obtains linear measure-
ments of a noisy version xn = x + εn of the signal x ∈ <N . For
a sensor n ∈ {1, ..., S}, the vector of measurements is denoted as
yn = Φn(x+εn), where Φn is aM×N (M < N ) matrix represent-
ing its sampling system. The entries of the matrix are independent
and identically distributed (i.i.d.) random variables from a normal



Fig. 1. Sensor network architecture

distribution N (0, 1/M). The noise εn consists of i.i.d., zero-mean,
Gaussian random variable with variance σ2. Suppose that the test
signal x belongs to c, one of the C classes, where c ∈ {1, 2, ..., C}.
We denote our set of training samples as T = {T 1, T 2, ..., TC},
with T c = {tc1, tc2, .., tcl } where tcl is the lth training vector in class
c.

Our goal is to exploit the diversity achieved by the multiple ob-
servations and the use of multiple measurement matrices Φn in order
to reach a classification decision. We assume that there exists a K-
dimensional linear subspace Ψ where the signal can be classified
efficiently with simple nearest neighbor search among the projection
coefficient vectors. This classification subspace is independent of the
sensing system and can be computed by classical linear dimension-
ality reduction techniques applied on the training data. We however
cannot classify directly the observation sets in Ψ since we only have
access to compressed measurements and not to the observed signals.
In addition, we want to avoid the costly reconstruction of the signal
because it will introduce artifacts as the sensing matrix Φn is not
full rank in general. Hence, the role of the central node is to reach
a classification decision based on the measurements from multiple
observations while properly exploiting the knowledge of the clas-
sification subspace. The compressed classification problem can be
formally defined as follows.

Compressed Classification Problem. Given a linear classifi-
cation subspace Ψ ∈ <N and a set of classes C, and given a set
of S sensors with sensing matrices Φn of size M × N (M < N ),
the fusion center has to predict the correct class c ∈ C of an ob-
ject of interest x from a set of S compressed noisy observations
yn = Φn(x+ εn).

3. CLASSIFICATION OF COMPRESSED OBSERVATION
SETS

In this section, we introduce classical dimensionality reduction tech-
niques for solving the problem of classification of multiple com-
pressed observations. We define a new classification subspace by
embedding the subspace Ψ in the compressed domain. The embed-
ding of Ψ in <M is simply performed by projecting its vectors onto
the subspace defined by the rows of the measurement matrix Φn.
The new subspace is characterized by the vectors of the matrix:

Ψ̂n = ΦnΨ. (1)

Notice that the classification subspace Ψ̂n could also be defined by
applying linear dimensionality reduction directly on the set of train-
ing measurements. That, however, would increase significantly the
computational cost since it would lead to a different subspace Ψ̂n

for each sensing matrix Φn.

The coefficients of the projection of the measurements yn and
the training data onto the subspace defined by the vectors Ψ̂n are
respectively

α̂yn = Ψ̂T
nΦn(x+ εn) = (ΦnΨ)T Φn(x+ εn),

α̂tci
= Ψ̂nΦnt

c
i = (ΦnΨ)T Φnt

c
i .

We exploit the diverse observations that belong to the same class
and extract more information about the signal x by taking their av-
erage:

α̂yavg =
1

S

S∑
n=1

ΨT ΦT
nΦn(x+ εn). (2)

The averaging scheme is expected to work well since we assume
that the noisy terms are independent and identically distributed.
Thus, the error components with different signs will cancel out in
the summation. The single test sample that occurs after averaging
will be classified by using the NN classifier:

c = argmin
c∈{1,...,C},∀i

‖α̂yavg −
1

S

S∑
n=1

ΨT ΦT
nΦnt

c
i‖22. (3)

We show now that the matrix 1
S

∑S
n=1 ΦT

nΦn will tend to the
identity matrix as we increase the size of the observation sets. Con-
sider one term n of the summation and denote as φ(n)

ij the element
of the ith row and the jth column of the matrix Φn. Let {Q(n)}
(with n = 1..S) be defined as Q(n) = ΦT

nΦn and denote by q(n)
ij

the entries of the matrixQ(n). Since the entries of the matrix Φn are
i.i.d. with σ2 = 1/M we have
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where we used the fact that E{φ(n)
ki

4
} = 3 · σ4 = 3/M2 and

E{φ(n)
ki

2
φ
(n)
ji

2
} = σ2 · σ2 = 1/M2. From the central limit

theorem, as the sample size S increases, the distribution of the
sample average φii = 1

S

∑S
n=1 q

(n)
ii of these random variables

approaches the normal distribution with mean E{q(n)
ii }=1 and

variance Var{q(n)
ii }/S = 2/MS. Similarly, for the non diago-

nal elements of the matrix Q(n) we compute that E{q(n)
ij }=0 and

Var{q(n)
ij } = 1

M
, for i 6= j. The distribution of the sample average

φij = 1
S

∑S
n=1 q

(n)
ij thus approaches also a normal distribution with

N (0, 1
MS

) for large values of S.
The above equations imply that, as the number of the observa-

tion set increases, the variance of the variables φii and φij decreases.
The variables tend to their expected value φii → 1 and φij → 0,
which means that Φ = 1

S

∑S
n=1 ΦT

nΦn → I for S sufficiently large.
Moreover, for the same variance, the number of measurements that



(a) Mandolin (b) Wheelchair (c) Accordion

(d) Nautilus (e) Strawberry (f) Yin-Yung

Fig. 2. Example images from each class

are necessary for classification depends on the number of the obser-
vations. More precisely, as we increase the size of the observation
set, the necessary measurement rate is smaller. The above result con-
firms that ΨT 1

S

∑S
n=1 ΦT

nΦnx → ΨTx for large values of S,M .
Hence, the classification performance will get closer to the one ob-
tained by classifying directly the original signal x in the subspace
defined by Ψ.

4. SIMULATION RESULTS

4.1. Experimental setup

In this section we quantify the performance of the proposed frame-
work. We use two data sets from the Caltech database 1 for our
experimental evaluation, the first containing images of objects be-
longing to different categories and the second consisting of 450 face
images of 27 people. For the first data set, we have selected six cat-
egories that will be the different classes of our problem. Each cate-
gory contains 50 to 100 images and an example image for each class
is shown in Fig.2. The classification subspace is found by perform-
ing Principal Component Analysis (PCA) to our training data [1].
All the data are then projected onto the subspace defined by the
K = 10 largest eigenvectors that are given by PCA. For the second
set of experiments, we have selected randomly 10 different individu-
als from the face data set, under different lighting conditions or with
different expressions or backgrounds. The classification subspace is
found by applying Linear Discriminant Analysis (LDA) [1] on the
training data and the reduced space consists of K = 9 eigenvec-
tors. For computational convenience, all images in both data sets
are converted to greyscale and are downsampled to a resolution of
50x50 pixels. For each class, half of the images have been randomly
selected as training and the rest as test data.

4.2. Classification performance

We explore the effect of the number of the measurements M on the
performance of the NN classifier for both data sets. We first consider
noisy samples of the signal xn = x+εn. The noise εn is modeled as
zero mean, additive Gaussian noise with σ = 0.8 which corresponds
to an SNR between 14 and 20 dB, depending on the energy of each
test image. We compare the classification performance of the NN
classifier in four different classification schemes: (i) classification of
the signal xavg = 1

S

∑S
n=1 xn in<N , (ii) classification of the signal

1Publically available at: http://www.vision.caltech.edu/

xavg in the classification subspace Ψ, (iii) classification of the mea-
surements yavg = 1

S

∑S
n=1 Φnxn in <N and (iv) proposed frame-

work. We perform classification experiments for different numbers
of compressive measurements, M = [10 : 10 : 1000] (in MATLAB
notation). For illustration, we select the size of the observation set
as S = 20. We measure the performance in terms of classification
error rate, which is the percentage of the test samples that have been
misclassified. For each setting we execute 100 random experiments
of observation sets, which correspond to 100 different realizations of
the measurement matrix Φn and the noise term εn. For each value
of M , we report the average classification error rate.

Fig.3 verifies that, for both data sets, linear dimensionality re-
duction techniques lead to a better separation of the data that belong
to the different classes, resulting in lower classification error rates.
In particular, the classification of signals in the subspace Ψ is more
accurate in comparison to the classification performance in the high
dimensional space<N . In the case of compressed measurements, we
observe that the embedding of the classification subspace Ψ in the
compressed domain gives better classification results than the direct
classification of the measurements in <N . Notice that the frame-
work works for both PCA and LDA and it does not depend on the
linear dimensionality reduction technique that is applied to the train-
ing data. Moreover, our classification framework approximates the
performance of the classification of the signal in Ψ with only a few
measurements.

In addition, we examine the performance of the averaging
scheme for different sizes of observation sets. We illustrate the
classification performance in the cases of (i) a single measurement
matrix, i.e., Φn = Φ, ∀n and (ii) multiple measurement matrices
Φn. We observe in Fig.4 that an increase in the number of observa-
tions gradually improves the classification error rate in both cases.
Notice, first, that the measurement rate for a specific error rate re-
duces as the size of the observation set increases. Moreover, the
classification accuracy improves and in particular, for a sufficiently
large value of S, the classification performance of the compressed
measurements will tend to the one obtained using high dimensional
signals. This improvement is expected because as we have already
shown in Section 3, the larger the number of observations, the higher
the probability that the matrix Φ = 1

S

∑S
n=1 ΦT

nΦn tends to the
identity matrix I .

Finally, we compare the performance in the cases where sensors
have a single or respectively multiple measurement matrices. It is
obvious from Fig.4 that the performance is significantly improved in
the latter case. Since each Φn is different, all their rows effectively
combine to span more space in <N . Eq.(2) results in a linear com-
bination of multiple transformed representations of the same signal,
meaning that the performance of the classifier in the compressed do-
main will approximate the performance in the subspace Ψ. On the
other hand, if all the observations are obtained with the same ma-
trix Φ then all the measurements will belong to the same subspace
which only covers part of <N . Moreover, the central limit theorem
and thus our analysis in Section 3 do not hold in this case since the
variables {q(n)

ii }, n = 1..S are not independent. For an increasing
S, the performance is still expected to improve, due to the fact that
the increase in the size of the observation set will effect the error
terms. However, this improvement will be smaller in comparison to
the achievable gain in the multiple measurement matrices case.

5. CONCLUSIONS

In this paper we studied the problem of classification of multiple
compressed observations with linear subspace embeddings. We
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Fig. 3. Classification performance of (i) the noisy signals in <N , (ii) the noisy signals in Ψ, (iii) the compressed measurements in <N and
(iv) the proposed framework on the Caltech data sets of (a) faces and (b) objects.
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Fig. 4. Classification performance for different sizes of observation sets on the Caltech data sets of (a) faces and (b) objects.

introduced the use of classical linear dimensionality reduction tech-
niques and multiple observations of the same signal in order to
reduce the number of low cost random projections needed to cor-
rectly classify a signal. The proposed classification framework
maintains the good classification properties of the dimensionality
reduction techniques by embedding the classification subspace in the
compressed domain. Experimental results show that the proposed
scheme generally performs well, while only a few measurements are
sufficient to achieve high classification accuracy.
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