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ABSTRACT

Mobile phone data provides rich dynamic information on human ac-
tivities in social network analysis. In this paper, we represent data
from two different modalities as a graph and functions defined on
the vertex set of the graph. We propose a regularization framework
for the joint utilization of these two modalities of data, which en-
ables us to model evolution of social network information and ef-
ficiently classify relationships among mobile phone users. Simula-
tions based on real world data demonstrate the potential application
of our model in dynamic scenarios, and present competitive results
to baseline methods for combining multimodal data in the learning
and clustering communities.

Index Terms— Multimodal data, regularization on graphs, clas-
sification and clustering

1. INTRODUCTION

Data collected from mobile phones has recently attracted an increas-
ing interest in the scientific research community. Compared to the
traditional way of conducting social surveys, mobile phone data is
expected to provide much richer behavioral information with less
personal bias from the subjects. As one of the pioneering works,
the Reality Mining project conducted at MIT Media Lab [1] during
2005 has provided inspirational research on how to use bluetooth-
enabled mobile phones as wearable sensors to measure information
in complex networks. More recently, Nokia Research Center (NRC)
Lausanne has conducted a new mobile phone data collection cam-
paign since September 2009 [2], which provides us with an excellent
opportunity to study behaviors of mobile phone users and apply it to
social network analysis.

Mobile phone data usually comes with a multimodal nature re-
flecting different aspects of human activities, such as geographical
locations, bluetooth scans and phone calls. With such rich infor-
mation, we are particularly interested in finding the “social affinity”
in the mobile social network, which represents the strength of links
between mobile users in both service centric and user centric appli-
cations. Intuitively, in order to achieve this goal, we need to effi-
ciently “merge” different modalities of information together. In this
work, we represent mobile phone data from two different modali-
ties as a graph and functions defined on the vertices of the graph.
We then propose a regularization framework on the graph, in which
the functions living at the vertices of the graph are regularized by
a “smoothness” constraint that is defined by the graph connectivity.
This method helps us to merge two different modalities of infor-
mation together for classification and clustering problems in mobile
social network analysis; more interestingly, by taking into account

the temporal changes of graph structures, we show that it enables us
to capture the evolution of information in the network, which could
lead to realtime recommendation systems.

The regularization theory on graphs has been previously stud-
ied by many researchers [3][4]. However, in most of the works the
graph structure remains fixed. In contrast, we consider the tempo-
ral changes of the graph, which results in the evolution of functions
defined on the graph. There are also a few works in literature that
aim at efficient classification or clustering by combining multimodal
data [5][6], in which different modalities are represented by multiple
graphs that share the same set of vertices but different edges. The re-
search efforts are then devoted to working directly with the multiple
graph structures. However, we show that representing data as func-
tions on the graph leads to alternative and efficient solutions to this
general problem.

2. REGULARIZATION FRAMEWORK

In this section we explain how to merge two different modalities of
information together through a regularization framework on graphs.
Let us consider a weighted and undirected graph G = {E,V,w}
which consists of a set of vertices V/, a set of edges E with associated
edge weights w, and define a real scalar function f : V' — R on the
vertices of G. Notice that we assume that f is a scalar function for the
sake of simplicity, that is, f(¢) denotes the function value on vertex i,
but the framework can be easily extended to vector-valued function.
The regularization problem on graphs is outlined as follows. We start
with a prior distribution f fol of some specific information, which is
viewed as a function on the vertices of a graph at time instant ¢o.
When the graph evolves over time (with the same set of vertices),
the function f changes accordingly. The goal is then to estimate
f[t"] given the graph at time instant ¢,,, which reflects the dynamic
evolution of the information that f represents.

To study the network dynamic behavior, we adopt two criteria,
namely “smoothness” (or roughness) and “closeness”, of the func-
tion f (] defined on the graph. More specifically, we assume that the
values of f1¥ should vary slowly between closely related vertices in
the graph, while not being too different from the prior distribution
ftol These criteria thus give us a regularization term and a fidelity
term in the following optimization problem:
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where H (V') denotes the Hilbert Space of real functions on the ver-

tex set of the graph, <I>Ef] is the smoothness term determined by the
graph at time ¢, and ) is a parameter specifying the trade-off between



two competing terms. In order to derive such a smoothness term, we
use the graph differential operators that are defined in [3]. For two
vertices ¢ and j, the graph gradient operator V and the Laplacian
operator A applied on function f are defined as:

(V1)(i.4) = w;f;.f)fm— w;;;;’m @

(Af)(j )=y \/7 1@ (3)
i~ g

where w(i, j) is the weight on the edge between 4 and j, d(¢) and

d(j) are the degrees of 7 and j respectively, and ~ denotes that ¢ and

j are neighbours in the graph. The smoothness of f over the graph

can then be defined as the sum of the local variations of f at each

vertex:
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Plugging (4) into (1) results in the following problem formulation:
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Directly differentiating the objective function in (5) gives:
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Therefore, problem (5) can be efficiently solved by iterations:
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where the index (n) represents the iteration number, and 7 is a suit-
able step size for this gradient descent process. Notice that the choice
of the trade-off parameter A in (5) depends on the relative importance
of the competing terms in the application at hand.

So far we have explained how to get f ] from the graph structure
at time t, which enables us to investigate the temporal evolution of
the distribution f. Clearly, this regularization framework also helps
us to merge two modalities of information together, one being the
dynamic graph structure and the other being the distribution f. In the
following section, we will explain two applications based on these
two properties of our framework.

3. APPLICATION TO EVOLUTION MODELING

3.1. Setup

The first application of our approach is to model the evolution of net-
work information. We evaluate our method using the mobile phone
data that is currently being collected by NRC Lausanne [2]. Specif-
ically, we take two modalities of information, namely the GPS co-
ordinates and the bluetooth scanning records, of 68 mobile phone
users in the data collection campaign, and the goal is to merge these
two modalities together. On the one hand, according to the regular-
ization approach, we build the graph from the GPS information, that
is, we take GPS coordinates of all the users at one time instant, and
assign an edge between each pair with edge weight being one over
the physical distance between them. Then we generate a 8-nearest-
neighbor version of this complete graph as a representation of lo-
cation relationships among all these users. Obviously, this “GPS
graph” is constantly evolving as users are moving around; On the

other hand, in order to build functions on the graph, we utilize the
bluetooth scanning records of each user during the nine-month data
campaign period. In particular, we represent each user as a vector
of all the bluetooth devices that have ever been scanned, and calcu-
late the cosine similarity between each pair of users. This gives us an
symmetric adjacency matrix B where entry b;; describes the similar-
ity of the bluetooth scanning activities of user ¢ and user j. From this
information, we define for each user ¢ a “bluetooth affinity” function
fi, where the affinity between ¢ and j is calculated as:
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where V> denotes the user set without user ¢ and j. Following this
definition, we see that the affinity between two users is large when
they have similar scanning activities not only directly to each other,
but also in terms of their relationships to the rest of the users. Since
bluetooth scans can reflect physical proximity of mobile users, these
functions capture the relationships among the group of users that
are chosen. Clearly, each f; is a function defined on the vertices
of the “GPS graph”, representing the bluetooth affinities between
user ¢ and other users. We consider these functions f; as the prior
distributions f (*o] mentioned in our regularization framework, and
the goal is to estimate fi[t] which are the exact distributions at time
t. Obviously, this could be achieved by solving (5). Moreover, by
choosing different time instants, we will be able to investigate how
these distributions f;, namely bluetooth affinities between mobile
users, evolve with time.

3.2. Numerical results

Now we show the simulation results. We consider five different time
instants 1 to t5, with an eight-hour delay between each two consec-
utive ones. As examples, Fig. 1 shows the GPS graphs at ¢; and ¢2.
We compute fi[t] using the regularization framework, with a fixed
A set to 10 in order to emphasize the temporal change of the graph
structures. Notice that the choice of X is quite flexible here, as long
as it gives a reasonably high weight to the regularization term. In
practice, choosing A in a wide range from 5 to 15 leads to similar
results. Clearly, there are 68 functions f; in this setting and here we
just plot the results for two, namely fs5 and f7, as typical examples
which are shown in Fig. 2. Specifically, row 1 are the prior distribu-

tion f3 and the exact distributions f?E” at five different time instants,

and so as for row 2 for f7. From these results we are able to view fzgt]

and f7[t] as functions of time and see how they evolve as time goes
by, which are clearly resulted from the relevant locations of user 3
and 7 to the other users at different time instants. Hence, this gives
us an interesting model in estimating the temporal evolution of so-
cial affinities between mobile phone users. In this case such affinity
is defined based on bluetooth scanning activities, but the approach
can also be extended to other applications where different kind of
information is interested.

3.3. Analysis

In the following, we are going to validate the evolution of blue-
tooth affinities by examining the bluetooth scanning records in the
Nokia database. In particular, we define that user ¢ and user j have
a bluetooth interaction if they have scanned the same bluetooth de-
vice within a five-minute time window. Clearly, such interactions
will affect the bluetooth affinity value between user ¢ and j. Now
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Fig. 2. Evolutions of fg[,t] and f7[t]

let us go back to the results shown in Fig. 2. In the first row the
red point represents the affinity value between user 14 and 3, while
in the second row it represents such value between user 45 and 7.
We take these two dyadic user pairs as examples to show that the
evolutions of f:,[f] and f7[t] are supported by the bluetooth scanning
records in the database. For f3, for example, we can see that the
value of f3(14) is not very large, meaning that the averaged blue-
tooth affinity between these two users is not strong. However, this
value becomes quite large at time instants ¢; and t3, and such in-
creases are proven as user 3 and 14 have several interactions right
around these two time instants, which makes the similarity of their
scanning activities higher by the construction of f;. Another exam-
ple is shown in the second row of Fig. 2 for user 7. The averaged
bluetooth affinity between user 7 and 45 is quite large in f7, but
at the five chosen time instants the values f7(45) drop significantly.
This is supported by the fact in the database that, although user 7 and
45 indeed have a large number of interactions during the nine-month
period, they have no interaction during the time period containing
the chosen time instants. These two simple examples show that, the
regularization framework enables us to capture the temporal evolu-
tion of the bluetooth affinity between each pair of the mobile phone
users.

4. APPLICATION TO CLASSIFICATION & CLUSTERING

4.1. Setup

The second type of applications of our approach are classification
and clustering problems. As a new way of combining multimodal

data, we show that the regularization approach provides competitive
results in the task of classification and clustering of objects compared
to several baseline methods used for combining data represented by
multiple graphs. In this task, we take averaged information on phys-
ical locations and bluetooth scanning records of 68 mobile users dur-
ing nine months. More specifically, we measure how many times two
users have been sufficiently close to each other, and how many times
two have scanned the same bluetooth device, within a five-minute
time window. Aggregating results from such windows throughout
the nine-month period gives us two similarity matrices. Clearly, both
of them reflect the proximity between these mobile users, and the
goal is to combine them together. For our approach, we consider
the similarity matrix from locations as the graph, and represent the
information from bluetooth scans as functions on the graph in the
same way as (8). We then apply the regularization method and com-
bine the resulting functions f; to get a new similarity matrix of these
users. Notice that we choose A to be around 0.005 in this scenario
to give more weight to information from the bluetooth scans. Em-
pirically, we have seen that a small range of A from 0.002 to 0.01
provides effective performance. We compare our approach with the
following three baseline methods that are described in [5]: 1) using
sum of the two similarity matrices; 2) using sum of the normalized
similarity matrices; 3) using sum of the spectral kernels from each
similarity matrix.

4.2. Numerical results

Since we have access to the survey data that reveals the social rela-
tionships among the participants of the data collection campaign, we
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Fig. 3. ROC curves for different methods

consider this information as the “ground truth” of proximity between
users in our dataset. Each combining method can then be viewed as
a binary classifier to classify these relationships. We compare the
performance of different methods by plotting the Receiver Operat-
ing Characteristic (ROC) curves for each of them, which is shown
in Fig. 3 (a). It can be seen that our proposed method performs bet-
ter than these baseline methods in terms of the ratio of true positive
rate (¢.e. number of true positives divided by number of positives) to
false positive rate (¢.e. number of false positives divided by number
of negatives).

In order to further verify our method, we apply the same anal-
ysis to the MIT Reality Mining dataset [7]. This dataset contains
mobile phone data of 87 subjects participated in the Reality Mining
project, with the only difference from the Nokia data being that it
did not record the GPS coordinates of mobile users but just the IDs
of the serving cell towers at each time instant. Nevertheless, we can
still generate a similarity matrix representing roughly the location
relationships among users by assigning the weight of edge between
any two users as how many times they have been under the service
of the same cell tower during a five-minute time window. We then
construct functions on this location graph from bluetooth scanning
records and apply our regularization approach. Similarly, we com-
pare our approach to the baseline methods using the survey data in
the dataset as the “ground truth”. The result is shown in Fig. 3 (b)
(the curve for using only location similarity is omitted due to its
inferior performance), which again demonstrates that our proposed
method outperforms the baseline methods. Moreover, we evaluate
our method in the task of clustering mobile phone users using the
MIT dataset. More specifically, we consider the self-reported affil-
iations of subjects as the “ground truth” of clusters among mobile
users. We then apply spectral clustering [8] on the resulting adja-
cency matrices from each method (for baseline method 3 we use
kernel K-means), and adopt Purity and Normalized Mutual Infor-
mation (NMI) as two criteria to evaluate the clustering performance.
From the result shown in Fig. 4, we see that our method shows better
performance in terms of both measures.

5. DISCUSSIONS

The main contribution of this paper is two-fold: Firstly, we have pro-
posed a regularization framework on graphs to model the temporal
evolution of information that we are interested in. This is particularly
interesting in social network analysis, since it enables us to capture

Purity NMI
Proposed method 0.7161 0.5974
Summation of normalized similarity 0.6628 0.4331
Summation of similarity 0.6368 0.3590
Summation of spectral kernels 0.6405 0.4567

Fig. 4. Evaluation of clustering for MIT Reality Mining dataset

the dynamic characteristics of the network, as shown in the bluetooth
affinity example. Practical application of our approach could be
powerful recommendation systems that provide mobile phone users
with realtime affinity evolution. Secondly, as a new way of combin-
ing multimodal data, our method provides competitive results to the
commonly used baseline methods in the task of classification and
clustering. In terms of future work, we still need to find a construc-
tive way of choosing the graph and the functions from more than two
modalities of data to fit the regularization framework, which will cer-
tainly lead to more applications in social network analysis.
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