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ABSTRACT

Multiplicative update algorithms have encountered a great success

to solve optimization problems with non-negativity constraints, such

as the famous non-negative matrix factorization (NMF) and its many

variants. However, despite several years of research on the topic, the

understanding of their convergence properties is still to be improved.

In this paper, we show that Lyapunov’s stability theory provides a

very enlightening viewpoint on the problem. We prove the stability

of supervised NMF and study the more difficult case of unsupervised

NMF. Numerical simulations illustrate those theoretical results, and

the convergence speed of NMF multiplicative updates is analyzed.

Index Terms— Optimization methods, non-negative matrix

factorization, multiplicative update algorithms, stability, Lyapunov

methods.

1. INTRODUCTION

Non-negative matrix factorization (NMF) is a popular technique al-

lowing the decomposition of two-dimensional non-negative data as a

linear combination of meaningful elements in a dictionary [1]. Given

an F × T data matrix V having non-negative entries, NMF con-

sists in computing a rank-K truncated approximation V̂ of matrix

V (with K < min(F, T )) as a product V̂ = WH , where both the

F×K matrix W and the K×T matrix H have non-negative entries.

The columns of matrix W form the elements of the dictionary, and

the rows of H contain the coefficients of the decomposition. NMF

can be considered either as a supervised, or as an unsupervised learn-

ing tool. In the case of supervised learning [2], the dictionary W is

estimated from training data in a preprocessing stage, and matrix H

only has to be computed given the data in matrix V . In the case of

unsupervised learning [1], both matrices W and H have to be com-

puted given V . Several algorithms have been proposed in order to

compute an NMF. The most popular are the multiplicative update al-

gorithms initially proposed by Lee and Seung [3]. These algorithms

can be applied both to supervised and to unsupervised NMF.

A curious point is that to the best of our knowledge, the con-

vergence properties of multiplicative update algorithms for unsuper-

vised NMF have not been clearly identified. Indeed, Lee and Seung

proved that the objective function decreases at each iteration [3].

However, this proves neither that the limit value of the objective

function is a local minimum, nor that the successive iterates con-

verge to a limit point. In other respects, some numerical examples
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have been presented in [4], where the Karush-Kuhn-Tucker condi-

tions are not fulfilled after a high (but finite) number of iterations,

but this does not contradict possible asymptotic convergence to a lo-

cal minimum. Finally, since multiplicative updates involve ratios,

numerical problems can be encountered if the denominator becomes

arbitrarily small. In order to circumvent this problem, it is proposed

in [5] to add a small positive quantity to the denominator, and it is

proved that any accumulation point of the sequence of the iterates

computed in this way is a stationary point. However there is no

guarantee that such a stationary point is a local minimum, nor that

the algorithm converges to this accumulation point.

In this paper, we intend to analyze the convergence properties

of NMF multiplicative update algorithms. We apply Lyapunov’s

first and second methods [6] to find some criteria which guaran-

tee the exponential or asymptotic stability of the local minima of

the objective function. This approach is applied to prove the stabil-

ity of supervised NMF multiplicative updates, and we finally show

how Lyapunov’s first method provides some interesting insights into

the convergence properties of unsupervised NMF multiplicative up-

dates. The theoretical results presented in the paper are confirmed by

numerical simulations involving both supervised and unsupervised

NMF, and the convergence speed of NMF updates is investigated.

2. MULTIPLICATIVE UPDATE ALGORITHMS AND NMF

Given a matrix V ∈ R
F×T
+ and an integer K < min(F, T ), NMF

consists in computing a reduced-rank approximation of V as a prod-

uct V̂ = WH , where W ∈ R
F×K
+ and H ∈ R

K×T
+ . This prob-

lem can be formalized as the minimization of an objective function

D(V |WH) =

F∑

f=1

T∑

t=1

d

(

vft

∣∣∣∣∣

K∑

k=1

wfkhkt

)

, (1)

where d is a scalar divergence (i.e. a function such that ∀x, y ∈
R+, d(x|y) ≥ 0, and d(x|y) = 0 if and only if y = x). β-

divergences [7] are defined for all β ∈ R\{0, 1} as

dβ(x|y) =
1

β(β − 1)

(
xβ + (β − 1)yβ − βxyβ−1

)
. (2)

The Euclidean distance corresponds to β = 2, and Kullback-Leibler

and Itakura-Saito divergences are obtained when β → 1 and β → 0,

respectively. The generalization of Lee and Seung’s multiplicative

updates to the β-divergence takes the following form [8]:

W ← W ⊗

(
(V ⊗ (WH)β−2)HT

(WH)β−1HT

)η

(3)

H ← H ⊗

(
W T (V ⊗ (WH)β−2)

W T (WH)β−1

)η

(4)



where η = 1, the symbol ⊗ and the fraction bar denote entrywise

matrix product and division respectively, and the exponentiations

must also be understood entrywise. In the case of unsupervised

NMF, updates (3) and (4) are computed alternately, whereas in the

case of supervised NMF, the update (4) only is computed at each it-

eration, matrix W being kept unchanged. We focus in this paper on

the generalization of this approach to an exponent step size η > 0
(possibly different from 1) and we analyze the convergence proper-

ties of the multiplicative updates (3) and (4) in section 4. As will

be shown in section 5, η actually permits to control the convergence

rate, and in particular to outperform the standard case η = 1.

In [8], it was proved that if η = 1 and β ∈ [1, 2], then the

objective function is non-increasing at each iteration of (3) and (4).

The following proposition proves that (3) and (4) actually satisfy the

same decrease property for all η ∈]0, 1] (i.e. 0 < η ≤ 1).

Proposition 1. Consider the objective function D(V |WH) de-
fined in equation (1), involving the β-divergence (2), with β ∈ [1, 2].
If η ∈]0, 1], if all entries in the numerator and denominator in re-
cursion (3) are non-zero and if (W ,H) is not a fixed point of (3),
then (3) makes the objective function strictly decrease. Similarly,
if η ∈]0, 1], if all entries in the numerator and denominator in re-
cursion (4) are non-zero and if (W ,H) is not a fixed point of (4),
then (4) makes the objective function strictly decrease.

Proposition 1 is proved in [9]. Note that this property does not

guarantee that the limit value of the criterion is a local minimum, nor

that the successive values of W and H converge to a limit point.

3. STABILITY DEFINITIONS

Let us recall a few definitions in Lyapunov’s stability theory of dis-

crete dynamical systems [6], which aim to characterize the conver-

gence properties of the general recursion x(p+1) = φ(x(p)) (where

p denotes the iteration index, x(p) is the iterate at iteration p, and

function φ is called a mapping), in a neighborhood of a fixed point

x (such that φ(x) = x). Notation ‖.‖ denotes any vector norm.

Definition 1 (Lyapunov stability). A fixed point x ∈ R
n
+ of the

recursion x(p+1) = φ(x(p)), where mapping φ : R
n
+ → R

n
+ is

continuous in a neighborhood of x, is said to be Lyapunov stable
if ∀ε > 0, ∃δ > 0 such that ∀x(0) ∈ R

n
+, ‖x(0) − x‖ < δ ⇒

‖x(p) − x‖ < ε ∀p ∈ N.

This property means that initializing the recursion close enough

to x guarantees that the subsequent iterates remain in a bounded

domain around x. However, it does not guarantee local convergence.

A fixed point which is not Lyapunov stable is called unstable.

Definition 2 (Asymptotic stability). A fixed point x ∈ R
n
+ of the

recursion x(p+1) = φ(x(p)), where mapping φ : Rn
+ → R

n
+ is con-

tinuous in a neighborhood of x, is said to be asymptotically stable if

it is Lyapunov stable and there exists δ > 0 such that ∀x(0) ∈ R
n
+,

‖x(0) − x‖ < δ ⇒ x(p) −→
p→+∞

x.

This property means that initializing the recursion close enough

to x guarantees the convergence to x. A fixed point which is Lya-

punov stable but not asymptotically stable is marginally stable.

Definition 3 (Exponential stability). A fixed point x ∈ R
n
+ of the

recursion x(p+1) = φ(x(p)), where mapping φ : R
n
+ → R

n
+ is

continuous in a neighborhood of x, is said to be exponentially stable
if there exists δ, α > 0 and ρ ∈]0, 1[ such that ∀x(0) ∈ R

n
+,

‖x(0) − x‖ < δ ⇒ ‖x(p) − x‖ ≤ α‖x(0) − x‖ ρp ∀p ∈ N. (5)

In this case, the minimum value of ρ such that equation (5) stands is

called the rate of convergence of the recursion.

This property ensures a linear speed of convergence; it also im-

plies asymptotic stability. A fixed point which is asymptotically sta-

ble, but not exponentially stable, is generally characterized by a sub-
linear speed of convergence (depending on the initialization). Note

that all the stability properties defined above are local, which means

that those properties hold in a neighborhood of the fixed point x.

4. STABILITY ANALYSIS OF NMF ALGORITHMS

In this section, we show how Lyapunov’s stability theory applies to

the particular problem of NMF introduced in section 2.

4.1. Supervised NMF

In supervised NMF, matrix W is kept unchanged and matrix H only

is updated by the multiplicative update (4). Below, we remap the

entries of W and H into vectors w and h of dimensions FK and

KT , respectively. The following propositions are proved in [9, 10].

Proposition 2. Let w ∈ R
FK
+ . Let h ∈ R

KT
+ be a local minimum

of the objective function h 7→ D(w,h) defined in equation (1). Let
[∇2

hD(w,h)]+ be the matrix extracted from the Hessian matrix of
D w.r.t. h, by selecting the rows and columns whose index i is such
that ∂D

∂hi
(w,h) = 0. Finally, let h 7→ φh(w,h) denote the map-

ping defined by equation (4), and ∇φhT
(w,h) denote its Jacobian

matrix1 w.r.t. h. Then ∀β ∈ R, ∃η⋆ ∈]0, 2] such that

• If η ∈]0, η⋆[ and if matrix [∇2
hD(w,h)]+ is positive definite,

then h is an asymptotically stable fixed point of mapping φh.

• If η = 0, then h is a marginally stable fixed point.

• If η /∈ [0, η⋆], then h is an unstable fixed point.

• h is exponentially stable if and only if η ∈]0, η⋆[, matrix
[∇2

hD(w,h)]+ is positive definite, and ∀i such that hi = 0,
∂D
∂hi

(w,h) > 0. In this case, the rate of convergence is equal

to the spectral radius ρ⋆ = ρ
(
∇φhT

(w,h)
)
< 1.

If moreover β ∈ [1, 2], then η⋆ = 2.

Proposition 2 proves the exponential or the asymptotic stability

of the local minima of (1) with respect to H under mild conditions.

The following proposition proves that conversely, exponentially sta-

ble fixed points of recursion (4) are local minima of (1).

Proposition 3. Let w ∈ R
FK
+ . For all β ∈ R, if η > 0 and if h is

an exponentially stable fixed point of mapping φh, then h is a local
minimum of function h 7→ D(w,h).

4.2. Unsupervised NMF

Analyzing the stability of the algorithm which alternates multiplica-

tive updates (3) and (4) happens to be particularly difficult. Indeed,

it is well known that unsupervised NMF admits several invariances:

the product WH is unchanged by replacing matrices W and H by

1∀1 ≤ i, j ≤ KT , the (i, j)th coefficient of ∇φhT
(w,h) is

∂φh
j

∂hi
.



the non-negative matrices W ′ = WD and H ′ = D−1H , where

D is any diagonal matrix with positive entries. Consequently, the

local minima of the objective function are never isolated (any lo-

cal minimum is reached on a continuum of matrices W ′ and H ′

whose product is equal to WH). For this reason, the local min-

ima of the objective function can never be exponentially stable. Be-

low, we remap the entries of w and h into a vector x, of dimension

FK +KT .

Proposition 4. Let x be a local minimum of the objective function
D defined in equation (1). Let φx denote the mapping defined by
the composition of (3) and (4), and ∇φxT (x) denote its Jacobian
matrix w.r.t. x. Then ∀β ∈ R, ∃η⋆ ∈]0, 2] such that

• If η ∈]0, 2[, ρ
(
∇φxT (x)

)
≥ 1. If moreover η ∈]0, η⋆[,

ρ
(
∇φxT (x)

)
= 1.

• If η = 0, then x is a marginally stable fixed point.

• If η /∈ [0, 2], then x is an unstable fixed point.

• ∀η ∈ R, x is not an exponentially stable fixed point.

If moreover β ∈ [1, 2], then η⋆ = 2.

This proposition is proved in [9, 10]. If η ∈]0, 2[, Proposition 4

does not permit to conclude about the possible stability of the local

minimum. This is because 1 is always an eigenvalue of the Jacobian

matrix ∇φxT (x), which is generally multiple (we suppose that its

multiplicity accounts for the invariances of the factorization).

5. SIMULATION RESULTS

In this section we propose some numerical simulations which illus-

trate the theoretical results presented in section 4.

5.1. Supervised NMF

First, we study the stability of the multiplicative update (4) applied

to matrix H , while keeping matrix W unchanged.

5.1.1. Example of sub-linear convergence speed

In this first experiment, the dimensions are F = 3, T = 3 and K =
2. The multiplicative update (4) is applied to the Kullback-Leibler

divergence (β = 1) with a step size η = 1 (which corresponds to the

standard multiplicative update). Let

V =




1 2 3
2 3 4
3 4 5



 and W =




1 1
2 1
3 1



 . (6)

It can be noticed that V is singular, and that it can be exactly

factorized as the product V = WH , where

H =

[
1 1 1
0 1 2

]
. (7)

Thus we know that the lowest value of D(V |WH) w.r.t. H is

0, and that this global minimum is reached for H in (7). This exam-

ple was chosen so that matrix [∇2
hD(w,h)]+ is positive definite,

but ∃i/hi = 0 and ∂D
∂hi

(w,h) = 0. Thus according to Propo-

sition 2, this global minimum is an asymptotically stable, but not

exponentially stable fixed point. Therefore the speed of convergence

of the multiplicative update (4) may be sub-linear. Fig. 1 shows the

results obtained by initializing (4) with a matrix H having all co-

efficients equal to 2. As can be noticed in Fig. 1-(a), the objective

function D monotonically converges to 0 (its global decrease was

proven in Proposition 1). Besides, Fig. 1-(b) represents the sequence
1

‖H(p)−H‖F
− 1

‖H(p+1)−H‖F
(where ‖.‖F denotes the Frobenius

norm, H(p) is the matrix computed at iteration p and H is the matrix

defined in equation (7)) as a solid blue line. This sequence converges

to a finite negative value (represented by the dashed red line), which

shows that ‖H(p) −H‖F = O(1/p). As predicted by the theoreti-

cal analysis, the convergence speed happens to be sub-linear (at least

for the proposed initialization).
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Iteration index p

0 200 400 600 800 1000
−0.12

−0.1

−0.08

−0.06

−0.04

(b) 1 / ||H
(p)

−H||
F
 − 1 / ||H

(p+1)
−H||

F
 (η = 1)

Iteration index p

Fig. 1. Example of sub-linear convergence speed

5.1.2. Example of linear convergence speed

In this second experiment, all variables are defined as in sec-

tion 5.1.1, except that the top left coefficient of V is replaced by

0.9. Consequently, this matrix is no longer singular, thus the global

minimum of the objective function w.r.t. H cannot be zero. Instead,

a local (possibly global) minimum w.r.t. H can be computed by

means of multiplicative update (4), initialized as in section 5.1.1.

Numerically, we observed that [∇2
hD(w,h)]+ is positive definite

and ∀i/hi = 0, ∂D
∂hi

(w,h) > 0, thus Proposition 2 now proves

the exponential stability of this local minimum, with a convergence

rate equal to the spectral radius ρ⋆. Fig. 2-(a) shows that the ob-

jective function D is monotonically decreasing. Besides, Fig. 2-(b)

represents the sequence
‖H(p+1)−H‖F
‖H(p)−H‖F

as a solid blue line, and the

value ρ⋆ as a dashed red line. It can be noticed that this sequence

converges to ρ⋆, which shows that ‖H(p) −H‖F = O (ρ⋆p). As

predicted by the theoretical analysis, the convergence speed is linear,

with a convergence rate equal to ρ⋆.

5.1.3. Optimal step size

In this third experiment, all variables are defined as in section 5.1.2,

and we are looking for an optimal step size η. Since β = 1, Propo-

sition 2 proves that the local minimum is exponentially stable if and

only if 0 < η < 2. In Fig. 2-(c), the solid red line presents the

spectral radius ρ⋆ as a function of η, for all η ∈] − 0.1, 2.1[. This

simulation result confirms that ρ⋆ < 1 if and only if 0 < η < 2, and

it shows that there is an optimal value of parameter η, for which the

rate of convergence is optimal. In particular, the standard step size

η = 1 is not optimal. Additional experiments (not displayed in the

Figure) showed that the objective function D diverges for a value of

eta outside the range [0, 2].
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5.2. Unsupervised NMF

We now study the case of unsupervised NMF, which alternates mul-

tiplicative updates (3) and (4) for W and H . In this fourth experi-

ment, all variables are defined as in section 5.1.2, and the algorithm

is initialized in the same way. Fig. 3-(a) shows that the objective

function D is monotonically decreasing (to a non-zero value). As

in section 5.1.3, the solid red line in Fig. 3-(b) represents the spec-

tral radius ρ
(
∇φxT (x)

)
as a function of the step size η, for all

η ∈] − 0.1, 2.1[. We note that ρ
(
∇φxT (x)

)
> 1 if η /∈ [0, 2],

and ρ
(
∇φxT (x)

)
= 1 in the range η =]0, 2[, which confirms that

the local minimum is not exponentially stable. Finally, the solid blue

line represents the maximum among the magnitudes of the eigenval-

ues of matrix ∇φxT (x) which are different from 1 2. This suggests

an optimal value η ≈ 1.875, which is again different from the stan-

dard step size η = 1. Indeed it can be verified that the lowest value

of the objective function D (after 100 iterations) is reached when the

algorithm is run with this optimal value of η.
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Fig. 3. Unsupervised NMF

2This maximum value discards the eigenvalues equal to 1, which are due
to the invariances of the factorization.

6. CONCLUSIONS

In this paper, we analyzed the convergence properties of NMF mul-

tiplicative update algorithms based on β-divergences, where we in-

troduced an exponent step size η. In the case of supervised NMF,

we have presented some criteria which guarantee the exponential or

asymptotic stability of the multiplicative updates for any η ∈]0, η⋆[,
where ∀β ∈ R, η⋆ ∈]0, 2], and if β ∈ [1, 2], η⋆ = 2. We then

studied the more complex case of unsupervised NMF. In particular,

we proved the unstability of the multiplicative updates if η /∈ [0, 2].
Finally, the theoretical results presented in the paper were confirmed

by numerical simulations involving both supervised and unsuper-

vised NMF. Those simulations showed that the convergence rate de-

pends on the value of η, and that there exists an optimal value of η
which provides the fastest convergence rate.

An algorithmic outlook of this work would be the design of mul-

tiplicative update algorithms with an optimal or an adaptive exponent

step size. The proposed stability analysis could also be extended

to the hybrid case of constrained unsupervised NMF (as suggested

in [10]), to non-negative tensor factorization, or to general multi-

plicative update algorithms, designed for any optimization problem

with non-negativity constraints [9, 10]. Lyapunov’s stability theory

could also be used to study the stability of other alternating mini-

mization procedures for NMF, such as that presented in [11].
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