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ABSTRACT

Spoken dialogue systems are gaining popularity with im-

provements in speech recognition technologies. Dialogue

systems can be modeled effectively using POMDPs, achiev-

ing improvements in robustness. However, past research on

POMDPs-based dialogue system assumes that the model pa-

rameters are known. This limitation can be addressed through

model-based Bayesian reinforcement learning, which offers

a rich framework for simultaneous learning and planning.

However, due to the high complexity of the framework, a

major challenge is to scale up these algorithms for complex

dialogue systems. In this work, we show that by exploiting

certain known components of the system, such as knowledge

of symmetrical properties, and using an approximate online

planning algorithm, we are able to apply Bayesian RL on a

realistic spoken dialogue system domain.

Index Terms— POMDPs (Partially Observable Markov

Decision Processes), Spoken Dialogue, Reinforcement Learn-

ing, Bayesian Learning

1. INTRODUCTION

Spoken dialogue systems are getting increasingly popular

with improvements in speech recognition technologies. They

enable tasks to be completed using spoken language, and

have been applied in various domains such as an in-car spo-

ken dialogue system [1], an automated receptionist [2], and a

robotics wheelchair [3].

In a typical dialogue system, the intention of the user is

unknown. The system has to guess the intention, usually by

using a voice recognition interface, which is often ambiguous

due to noise in human communications. Hence, it is difficult

to determine which action to take at any given point in the

conversation.

In the past few years, it has been shown that spoken

dialogue systems can be modeled as Partially Observable
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Markov Decision Processes (POMDPs), achieving improve-

ments in robustness [4, 5, 6]. Using a POMDPs framework

helps to incorporate uncertainty in the dialogue system, and

allows actions to be chosen based on an optimization criteria.

However, past research in POMDP-based dialogue system

has always assumed a fixed and known POMDPmodel, which

is unrealistic in many applications. It is not possible to know

exactly how noisy the speech recognition is because of several

factors that are hard to determine, for instance, the reliability

of the voice recognition device, or the accent of the speaker.

Reinforcement Learning (RL) models have proved to be

effective for learning, but most RL methods do not explicitly

minimize the learning cost. This is particularly important in

spoken dialogue systems. Querying too few times leads to

a wrong decision, whereas querying too frequently frustrates

users as they have to repeat what they have already said. Thus,

it is important to develop methods for efficient low-cost learn-

ing.

Bayesian RL maintains a posterior distribution over all

possible model parameters, and computes an action selection

policy that is optimal with respect to this posterior [7, 8]. This

enables us to make use of prior knowledge to learn the param-

eters more efficiently. Model-based Bayesian RL methods are

typically computationally intensive, thus applications are still

limited to small domains.

This paper focuses on how we can obtain good decisions

from the spoken dialogue model despite inaccurate initial

model parameters. This is achieved by modeling the dia-

logue system as a Bayes-Adaptive POMDP (BAPOMDP)

model [9], and exploiting certain known symmetrical proper-

ties of the system to obtain scalable solutions.

2. POMDPS

POMDPs provide a principled mathematical framework

for modeling non-deterministic, sequential decision-making

problems [10, 11]. Formally, a discrete POMDP is specified

as a tuple (S,A,O, T, Z,R, γ), where S is a set of states, A is
a set of actions, and O is a set of observations. When applied

to dialogue systems, the state of the model captures the user’s



intent and the dialogue state. The actions define the set of

possible responses.

At each time step, the agent lies in some state s ∈ S.
It takes an action a ∈ A and moves from s to a new state s′.
Due to the uncertainty in action, the end state s′ is modeled as
a conditional probability function p(s′|s, a). The agent then
makes an observation to gather information on its own state.

The observation result o ∈ O is modeled as a conditional

probability function p(o|s′, a).
At each time step, the agent receives a rewardR(s, a) if it

takes action a in state s. The agent’s goal is to maximize its
expected total reward by choosing a suitable sequence of ac-

tions. For infinite-horizon POMDPs, the sequence of actions

has infinite length. We specify a discount factor, γ ∈ [0, 1) so
that the total reward is finite and the problem is well defined.

A belief state b is a probability distribution over S. We let
b(s) denote the probability assigned to world state s by belief
state b. Solving a POMDP consists of two steps executed
iteratively. The first step is action selection. If the agents

current belief is b, it finds the action a that maximizes the
future reward. The second step is belief estimation. After the

agent takes an action a and receives an observation o, its new
belief b′ is given by

b′(s) = ηp(o|s′, a)
∑

s∈S

p(s′|s, a)b(s) (1)

where η is a normalizing constant. The process then repeats.

The POMDP model has to go through a planning phase.

During this phase, it finds an optimal policy which describes

an optimal mapping of action to belief for all possible beliefs.

The dialogue system uses this policy to decide how to in-

teract with the users. The optimal policy for a POMDP is one

that chooses an action that maximises the expected reward.

Finding an optimal policy exactly for non trivial POMDPs

problems is computationally intractable. A near-optimal pol-

icy can be computed significantly faster than an exact one.

This is called an offline approach [12, 13, 14, 15, 16].

On the other hand, online approaches reduce the complex-

ity of the problem by planning online for only the current in-

formation state [17, 18, 19]. It considers only a small horizon

of possible scenarios.

3. BAPOMDPS

The Bayes-Adaptive POMDP (BAPOMDP) model is an al-

gorithm for learning and planning in POMDPs under param-

eter uncertainty [9]. Here, we assume that the state, action,

observation spaces are finite and known. In this paper, we

focus on the case where only p(o|s, a) is unknown, as this
is most relevant for practical dialogue systems. The other

model parameters p(s′|s, a), R(s, a) are known. In general,
the BAPOMDP can solve problems when p(s′|s, a), R(s, a)
are also unknown [9].

To account for the uncertainty, the BAPOMDP framework

uses Dirichlet distributions, which are probability distribu-

tions over the parameters of multinomial distributions. The

objective is to learn an optimal policy, such that actions are

chosen to maximize reward with respect to the posterior cap-

tured by the Dirichlet distribution.

The state space S′ of the BAPOMDP is defined as S′ =
S ∗O where O = {ψ ∈ N |S||A||Z||∀(s, a),

∑
z∈Z

ψa
sz > 0}

represents the space in which ψ lies. ψ is the vector of all

observation counts, and ψa
s′z is the numnber of times obser-

vation z was made in state s′ after doing action a.
It has been shown that the BAPOMDP is an instance of

POMDP [9]. As such we need to track b. To do this in a
tractable way, we consider an approximation whereby we do

the exact belief update (Eqn. 1) at a given time step, but only

keep the K most probable belief states in the new belief b′

and renormalise b′.
In most realistic domains, an exact online planning al-

gorithm is not tractable. We approximate the solution using

Real Time Belief State Search (RTBSS) [20] with a heuristic
d∑

i=1

γiRmax, where d is the depth of the search and γ is the

discount factor. RTBSS is a forward branch and bound search

in the belief space.

4. SMARTWHEELER DIALOGUE DOMAIN

The SmartWheeler Dialogue domain is a POMDPmodel used

for dialogue management between a user and an intelligent

wheelchair. It is a modification of the POMDP model de-

scribed in [21]. In this domain, the user has an unknown in-

tent, and the robot has to execute an action based on its guess

of the user’s intent. When it has identified the user’s intent,

the robot can execute a command action, receiving a positive

reward if correct, and zero reward otherwise. The robot can

also execute one query action, which is strictly information

gathering. This returns an observation giving an indication of

the user’s intent. Observations are not fully accurate.

We do not know the observation parameters, but we as-

sume that we know the state transitions and the rewards. We

also have some prior knowledge of similiarities in the obser-

vation parameters. Our goal is to come up with a policy that

gives us a reasonable action for all beliefs despite not know-

ing the parameters at the onset. This is achieved by learning

the observation parameters using the BAPOMDP framework.

In this domain, there are 25 states in the POMDP model.

Each state corresponds to the user’s intent, such as “drive one

meter forward” or “set speed to fast”. There are 25 ∗ 25 =
625 unknown observation parameters to learn. They are rep-
resented by the squares in Fig 1. Each corresponds to the

probability p(o|s, a). We learn each parameter separately by
making use of Dirichlet counts, and updating the counts each

time we make an observation.

In a typical dialogue system, many parameters are likely



Fig. 1. Matrix for observation probability parameters with

symmetry

to be similar. For instance, the phrase “drive slowly back-

ward” is similar to “drive slowly forward” and “drive slowly

one meter backward”, but is very different from “avoid ob-

stacle”. Using the knowledge that certain observation param-

eters have similar values, we can learn the parameters in a

faster manner. In Fig 1, similar value parameters are repre-

sented by the same letters, w, x, y or o. Note that all the
unlabeled squares are actually o.

This is how we make use of symmetry to update the

Dirichlet parameters upon receiving a new observation. Since

certain observation parameters have approximately the same

values, whenever we have an observation for a particular

observation parameter, besides updating the corresponding

Dirichlet parameter, we also update the Dirichlet parameters

corresponding to other similar observation parameters.

5. RESULTS

The aim of our experiments is to evaluate the performance

of the BAPOMDP approach under different conditions. First,

we investigate the effects of having different initial estimation

of the observation parameters, and second, we measure the

impact of using symmetry to update the counts.

In the actual dialogue model, the value of the observation

parameter x is set to 0.97. In our experiments, we consider
different priors from 0.5 to 0.9.

We run our experiments using two different ways of up-

dating the counts for estimating the observation probability

parameters. The first approach is the usual way of updating

each parameter independently. The second approach makes

use of symmetry with the parameters.

Each BAPOMDP simulation consists of 100 episodes.

Fig. 2. Returns with different priors and whether symmetry

was used in the count updates

Fig. 3. Model accuracy with different priors, using symmetry

for count updates

Fig. 4. Model accuracy with different priors, without using

symmetry for count updates

Each episode is a short dialogue sequence trial, which termi-

nates when the agent chooses a “command” action. At this

point, the POMDP state (the user’s intent) is reset, but the

distribution over the observation count vector is carried over

to the next episode.

We measure the empiricial returns of the policy under

the various conditions. This corresponds to the total rewards



achieved by the robot. We also measure the L1-distance, mea-

sured as
∑

s
|b(s) − b′(s)|. This is an indication of the accu-

racy of the estimated model. The smaller the distance be-

tween the real belief and the estimated belief, the more accu-

rate the model is.

Our experiments show that using symmetry results in a

larger return, and leads to a faster convergence of the eventual

returns. This is illustrated in Fig 2. Using symmetry to update

the observation counts also results in a faster convergence to

the correct model as shown in Fig 3 and 4. Even with poor

intial estimation of the observation parameters (poor priors),

we obtain good convergence to the presumed optimal returns

and good model accuracy, assuming we leverage symmetry

when updating the observation parameter counts.

6. DISCUSSION

In this paper, we propose a Bayesian reinforcement learn-

ing framework for simultaneous learning and decision mak-

ing on a robust spoken dialogue management, and present

tractable algorithms for applying this framework in large do-

mains. We also demonstrate the benefits of such an approach

on a human-robot interaction task.

This framework is mathematically sound, and the algo-

rithms are tractable. Even though knowledge engineering in

terms of defining the states, actions, priors and rewards, is still

a challenge, this is still applicable in many domains.

As voice user interfaces become more ubiquitious in our

daily lives, such as in our mobile devices and automated

telephone operators, we believe this is a first step towards

customizable user-specific interfaces.
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