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ABSTRACT

We describe and evaluate our toolkit openBliSSART (open-source
Blind Source Separation for Audio Recognition Tasks), which is the
C++ framework and toolbox that we have successfully used in a
multiplicity of research on blind audio source separation and feature
extraction. To our knowledge, it provides the first open-source im-
plementation of a widely applicable algorithmic framework based
on non-negative matrix factorization (NMF), including several pre-
processing, factorization, and signal reconstruction algorithms for
monaural signals. Apart from blind source separation using super-
vised and unsupervised NMF, we show how the framework is useful
for the increasingly popular audio feature extraction methods by NMF.
Furthermore, we point out a numerical optimization for NMF, and
show that NMF source separation in real-time on a desktop PC is
feasible with our implementation. We conclude with an evaluation
of our toolkit on supervised speaker separation, demonstrating how
our algorithmic framework allows to tune the real-time factors to the
desired perceptual quality.

Index Terms— Blind Source Separation, Speech Enhancement,
Instrument Separation, Real-Time Signal Processing

1. BACKGROUND AND OBJECTIVES

Blind Source Separation (BSS) in audio signals is a challenging field
with a broad range of applications, particularly in Music Information
Retrieval (MIR) and automatic speech recognition (ASR). In MIR, it
can be used for polyphonic transcription (“WAV to MIDI converter’)
or recognition of lyrics in singing, and typical sources to be separated
include instruments (e. g., drums), vocals, or single notes (for the
transcription case). On the other hand, BSS techniques can deliver
enhanced robustness of ASR by separating the wanted speech from
interfering signals such as background noise, or even other speakers.
The last years have seen a growing number of approaches exploiting
Non-Negative Matrix Factorization (NMF) [1-5], whose most promi-
nent advantage is that it can extract an arbitrary number of sources
from monophonic signals.

In summary, NMF has delivered excellent results in blind source
separation both of speech and music signals; in particular, the last
years have seen considerable improvements in perceptual quality
of the results [2, 3, 5]. Furthermore, applications of NMF in audio
processing are not limited to BSS, as there is a growing number of
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studies showing the advantage of NMF-based audio feature extraction,
especially in noisy conditions [6-8]. On the other hand, with the
increasing amount of computational power available today even on
mobile devices, we are moving towards the point where NMF-based
algorithms are ready to be used in real-life applications. However,
the lion’s share of the studies in the field focuses on optimizing the
separation results, neglecting implementation issues. Besides, to our
knowledge few demonstrators or open-source implementations for
NMF-based source separation exist!. The openBliSSART toolkit,
however, integrates leading-edge NMF algorithms into a flexible,
real-time capable, and open-source” C++ framework that is useful for
both music and speech processing and can be seamlessly integrated
into other toolkits.

In the remainder of this paper, we will first describe the algorith-
mic framework implemented in openBliSSART in Sec. 2, pointing
out a potential numerical optimization, and outline our usage of ex-
isting open-source software to improve stability and performance.
We evaluate openBliSSART, and in particular the proposed NMF
optimization, in Section 3, and conclude with an outlook on future
research questions in Section 4. To increase clarity of the following
section, we introduce the following notations: for a matrix A, the
notation A, . — resembling Matlab syntax — denotes the i-th row of A
(as a row vector), and we analogously define A.. ; for the j-th column
of A (as a column vector). We write A ® B for the elementwise
product of matrices A and B; division of matrices is always to be
understood as elementwise.

2. ALGORITHMIC FRAMEWORK

2.1. Component Separation Algorithms

openBliSSART’s design is oriented on BSS techniques realized by
NMFE. A basic procedure is to extract an arbitrary number of sources
(components) from audio files by computing the non-negative factor-
ization of a spectrogram matrix V &€ Rf *N obtained from short-
time Fourier transformation (STFT) into a spectral basis W € ]Rf xR
and activation matrix H € R

V =WH, (1)
yielding R component spectrograms V'“‘ ), j =1,..., R either by
multiplication of each basis vector wl) = W. ; with its activa-
tions h¥) := H; ., as in [2], or by a more advanced ‘Wiener filter’

!For example, on http://www.durrieu.ch/phd/software html, a NMF algo-
rithm for leading voice separation is available.
2Source code can be found at http:/openblissart.github.com/openBliSSART.
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approach, as described in [1, 5]:
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Each V9 is then transformed back to the time domain by inverse
STFT.

To obtain a factorization according to (1), a variety of NMF al-
gorithms can be used that minimize a distance function d(V|WH)
by multiplicative updates of the matrices, starting from a random ini-
tialization. d(V|[WH) can be chosen as the 3-divergence or one of
its special instances, the Itakura-Saito (IS) [5] divergence, Kullback-
Leibler (KL) divergence, or squared Euclidean distance (ED) [9].
Besides, to support overcomplete decomposition, i. e., choosing R
such that R(M + N) > M N, sparse NMF variants [2] for either
of the aforementioned distance functions, as well as the sparse Eu-
clidean NMF variant used in [10], are implemented. Additionally,
non-negative matrix deconvolution (NMD) [1, 3] is provided as a
context-sensitive NMF extension where each component is charac-
terized by a sequence of spectra, rather than by an instantaneous
observation.

The aforementioned NMF and NMD algorithms can be run on
magnitude, power, and Mel-scale spectra; besides, the ‘sliding win-
dow’ NMF from [6] is implemented that transforms the original
spectrogram V' to a matrix V' such that every column of V is the
row-wise concatenation of a sequence of short-time spectra (in the
form of row vectors):

V:,l V:,2 V:,N7T+1

V= S : NG
V:,T V:,T+1 V:,N
where T is the desired context length. That is, the columns of V’
correspond to overlapping sequences of spectra in V. Note that we
implemented inverse operations to the aforementioned transforma-
tions of the spectrogram, including Mel filtering and transformation
according to (3), to allow proper signal reconstruction.

Finally, and for reference purpose only, openBliSSART can also
apply the FastICA algorithm [11] in the time domain.

2.2. Supervised Component Classification

To cope with scenarios such as instrument separation — as in [4] — it
was necessary to extend the basic source separation capabilities: here,
typically 20-40 NMF components are needed for appropriate signal
modeling, thus the ‘tracks’ corresponding to one instrument, or an
instrument class such as drums, generally comprise more than one
component. Consequently, a classification process is necessary to
overlay individual components into C class spectrograms, yielding
the procedure depicted in Figure 1: first, a selection of training signals
is separated by means of NMF. Subsequently, the resulting compo-
nents are annotated (e. g., as drum or harmonic sounds), and features
are extracted from them to train a classifier, e. g., a Support Vector
Machine (SVM). Then, the actual separation process performs NMF
and uses the previously trained classifier on the separated components
to overlay them into class spectrograms V., c =1, ..., C": defining

Jo = {j: (w9 h9) classified as class ¢},

V.= v @

Jj€Je
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Fig. 1: Supervised component classification, as in instrument separa-
tion: the openBliSSART storage module manages the components
from which a classifier is built for usage in the separation process.
The steps required to train the classifier are depicted in gray shade.

preprocessing | algorithms | d(V|WH) | reconstruction

Mel filter NMF IS div. default
Power spec. NMD KL div. Wiener filtering
Sliding window Eucl. dist. comp. classif.
+sparsity

Table 1: Spectrogram preprocessing, factorization (according to a
cost function d(V|WH)), and signal reconstruction algorithms for
monaural source separation implemented in openBliSSART.

Acoustic features which are used for classification include Mel-
frequency Cepstral Coefficients or features specially suited to in-
strument separation. The available NMF algorithms are shown in
Tab. 1, yielding a flexible framework for NMF-based source separa-
tion where preprocessing, factorization, and component reconstruc-
tion algorithms can be chosen independently.

2.3. Supervised NMF and Acoustic Feature Extraction

Apart from component classification, another method to integrate
a-priori knowledge into the NMF source separation process is to per-
form supervised NMF, i. e., to predefine the first NMF factor as a set
of spectra that are characteristic for the sources to be separated, as op-
posed to a random initialization of both factors, and to compute only
the second NMF factor by multiplicative updates. A typical appli-
cation is speech enhancement, where the sources comprise different
persons speaking simultaneously [1, 10], or speech and noise [1]. The
spectra used for initialization are themselves often estimated by NMF
decomposition of training material [1,7,10]. Using any of the meth-
ods shown in Tab. 1, time signals corresponding, e. g., to different
speakers can be synthesized by overlaying component spectrograms.

Finally, openBliSSART was the toolkit used in our research on
supervised NMF feature extraction, which has delivered excellent re-
sults in robust speech processing including detection of non-linguistic
vocalizations [7, 8]. Consequently, it receives increasing attention at
the moment [6]. Thereby different sets of components are selected
as an in- or overcomplete feature basis, for which the time-varying
activation matrix (i. e., the second NMF factor) is computed by su-
pervised NMF. Note that openBliSSART allows this matrix to be
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Fig. 2: Tuning of the trade-off between RTF and perceptual quality for supervised NMF speech separation by adjusting the number of Mel
filters (20-60) and the NMF cost function. The average, minimum, and maximum PESQ score is shown for the separation of mixed signals
spoken by pairs of male/female speakers (24 speakers total) from the TIMIT database.
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Fig. 3: Euclidean NMF real-time factors (RTF) depending on the number of components (1 — 2 000), for matrices with N = 1 000 columns
and M € {50,100, 200, 500} rows (Figs. 3a through 3d). ‘NMF-ED-ov’ and ‘NMF-ED-in’ denote the algorithms optimized for overcomplete
and incomplete factorization, according to Sec. 2.4. ‘openBliSSART" refers to the proposed automatic selection between ‘NMF-ED-ov’ and
‘NMF-ED-in’ based on the criterion R(M + N) > M N to distinguish over- from incomplete factorization. The limit case R(M + N) = M N
is shown by the vertical bars, and real-time capability (RTF < 1) is indicated by the horizontal lines.

exported for further processing, e. g., by popular research toolkits
such as Weka or HTK (Hidden Markov Model Toolkit), enabling the
usage of NMF features for a huge variety of research. As a side note,
hybrid supervised / unsupervised NMF such as in [7] is supported by
openBliSSART, too, by allowing to specify which columns of the first
NMEF factor should be kept constant throughout the NMF iterations.

2.4. Optimization of Euclidean NMF

It is worth examining the multiplicative update rules for Euclidean
distance NMF, as proposed in [9], more closely, to derive an inter-
esting possibility for numerical optimization. In matrix formulation,
they read

wiv

VvHT
W « W——. 6
© WHH7” ©

In these rules, we can rearrange the matrix products by using their
associativity. First, we consider the denominator of the H update rule
(Eq. 5), which contains the product W? WH. When executed in the
order W (WH), the computational complexity is O(M N R); in
contrast, it is O(R?*(M + N)) for the order (W* W)H, assuming
the standard matrix multiplication algorithm. Thus, the effort for the
first case is expected to be lower if and only if M N < R(M + N),
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that is, in case of overcomplete factorization. The nested matrix
product WHHY in the denominator of rule (6) can be treated analo-
gously. Naturally, these are only asymptotic considerations, which are
however supported by our experimental results using efficient linear
algebra routines (Sec. 3). Hence, the openBliSSART routine for ED-
NMF uses the computation order (WH)H” resp. W’ (WH) for
MN < R(M + N), and W(HHT) resp. (W7 W)H otherwise.
For evaluation of this strategy in the next section, the algorithms
that always use the former or latter computation order will subse-
quently be denoted by ‘NMF-ED-ov’ resp. ‘NMF-ED-in’, as they are
arguably optimized to either over- or incomplete factorization.

2.5. Optimization of FFT and linear algebra

For further performance enhancement, openBliSSART utilizes sev-
eral leading-edge open-source libraries: first, FFTW [12] realizes
Fast Fourier Transformation (FFT) for arbitrary window sizes, dis-
posing of the need for zero padding. Furthermore, as all of the NMF
algorithms integrated in openBliSSART perform a high number of
matrix multiplications, we use the open-source BLAS implemen-
tation provided by the ATLAS project [13]. From our experience,
the BLAS routines decrease the real-time-factor (RTF) by an order
of magnitude for typical NMF applications, compared to a ‘naive’
matrix multiplication routine implemented in C++. Note that other
efficient implementations of Fourier transformations and Basic Linear
Algebra Subroutines (BLAS) could be effortlessly integrated, as C++



abstractions are provided in the signal processing and linear algebra
libraries.

3. PERFORMANCE BENCHMARKS

To provide some performance benchmarks of our toolkit, we first
visualize in Fig. 2 the trade-off between RTF and and separation
quality in supervised speaker separation according to Sec. 2.3. Since
in [1], no significant gain in perceptual quality could be obtained
by using NMD instead of NMF bases, we restrict the evaluation to
NME. Thereby we compared the effect of using different numbers of
Mel filters for scaling of the spectrogram: as the size of the matrix
V increases linearly with the number of filters, so does the computa-
tional effort for factorization, while in contrast a gain in separation
quality is expected by using more filters. Besides the number of Mel
filters, we varied the cost function (IS, KL, and ED), as the algorithms
minimizing these cost functions considerably differ in the number
of required matrix operations. To our knowledge, the importance of
both these parameters has not been addressed in previous studies.

We defined our evaluation methodology in accordance with [1]:
we randomly selected 12 pairs of male and female speakers from the
TIMIT database. For each pair, we mixed together two randomly se-
lected sentences of roughly equal length, and computed a NMF basis
W from the spectra in the other sentences spoken by each speaker.
Using supervised NMF with W, separated signals for both speakers
were obtained, whose similarity to the originals was measured using
the PESQ score (Perceptual Evaluation of Speech Quality, ITU-T
recommendation P.8§62). 100 iterations were performed on a 2.4 GHz
desktop PC with 4 GB of RAM, using a single computation thread.
The RTFs are computed by taking the elapsed CPU time over the
length of the mixed signals. From Fig. 2, it can be seen that best
average results are obtained by taking the KL divergence as distance
function. Notably, the Euclidean distance is on par with the KL diver-
gence concerning the RTF, while the IS divergence takes considerably
more computation time. As expected, the overall picture is that both
computational effort and separation quality increase with the number
of Mel filters. It must be taken into account, however, that the results
were obtained on mixture signals of 2-3 seconds length, such that
the overhead for initializing the separation application considerably
influences the RTF.

Second, we show in Fig. 3 the RTFs for in- and overcomplete
factorization by NMF minimizing the ED function. By comparing
the RTFs for the ‘openBliSSART’ strategy to either of the algo-
rithms optimized to in- or overcomplete factorization (‘NMF-ED-in’,
‘NMF-ED-ov’) according to Sec. 2.4, it can be seen that the proposed
implementation that determines the optimal algorithm by the factor-
ization dimensionality leads to considerable improvements in the RTF,
especially for very low or very high numbers of components. For this
experiment, we simply used random matrices, as separation quality is
not affected by the choice of algorithm, and for RTF calculation we
measured only the CPU time for the actual factorization and assumed
that the matrix columns correspond to signal frames shifted by 10 ms.

4. CONCLUSION

We introduced openBliSSART, a toolkit for blind source separation
and NMF-based audio processing, which has led us to great suc-
cess in a variety of research, including instrument separation [4],
noise-robust speech recognition [7], and detection of non-linguistic
vocalizations in speech [8]. In contrast to previously available open-
source implementations of specialized NMF algorithms, it provides a
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comprehensive, modular, and easily extensible framework; thus, we
strongly believe that it will be of high value to the research commu-
nity. On the other hand, it features some specific optimizations of
NMF whose benefit could be demonstrated through our benchmark
results.

In future development, besides keeping the toolkit on the leading
edge by including source/ filter models and probabilistic modeling,
foremost we will enhance its applicability in real-life scenarios by
allowing on-line and incremental audio processing, paving the way
for interesting new fields of research on blind source separation.
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