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ABSTRACT

In this paper, we propose an efficient and robust fall detection system
by using a fuzzy one class support vector machine based on video in-
formation. Two cameras are used to capture the video frames from
which the features are extracted. A fuzzy one class support vector
machine (FOCSVM) is used to distinguish falling from other activi-
ties, such as walking, sitting, standing, bending or lying. Compared
with the traditional one class support vector machine, the FOCSVM
can obtain a more accurate and tight decision boundary under a train-
ing dataset with outliers. From real video sequences, the success of
the method is confirmed with less non-fall samples being misclassi-
fied as falls by the classifier under an imperfect training dataset.

Index Terms— voxel person, discrete Fourier transform, fuzzy
one class support vector machine, fall detection, imperfect training
data

1. INTRODUCTION

Fall detection has been of increasing public concern in recent years.
Detecting a fall event at home is an indispensable part of elderly peo-
ple’s care because: 1, According to [1], falls are the leading cause
of death due to injury among the elderly population and 87% of all
fractures in this group are caused by falls. 2, Although many falls do
not result in injuries, 47% of non-injured fallers can not get up with-
out assistance and this period of time spent immobile also affects
their health.

The most popular fall detection techniques include wearable or
portable sensor-based methods, sound or vibration sensor-based ap-
proaches and computer vision-based methods. Compared with the
initial two types of methods, the computer vision-based methods
have advantages that the elderly persons need not wear sensors and
they are not affected by the environmental noises that sound or vi-
bration sensors will suffer. There are various ways to detect a fall
event using computer vision and signal processing techniques. In [2]
and [3], C. Rougier et al. use a threshold-based algorithm to compare
the values of the extracted features with the corresponding thresh-
olds to make decisions. The head’s 3-D velocity and human shape
information are extracted as features respectively. C. Juang and C.
Chang in [4] use an elegant self-constructing neural fuzzy inference
network for posture recognition to detect a fall. As an effective tool
for the classification problem, the SVM technique is applied in [5],
the extracted features are finally fed to a multi-class SVM for precise
classification of motions and determination of a fall event. In [6], a
layered hidden Markov model (LHMM)-based approach is proposed
to determine the state of the person (walking or falling) from a mul-
tiview pose classification strategy.

However, for the methods mentioned above, they either construct
different models for different activities [4] and [6], or build a very
complex structure to distinguish falls from other activities such as
the multi-class SVM method in [5]. Our work is underpinned by

the observation that the fall activity shares similarities and can be
ascribed to one class. This motivates us to use the one class classi-
fication technique for fall detection. In [7], M. Yu et al. propose
the idea of using a one class classifier for fall detection and dif-
ferent one class classifiers are compared, the results show that the
OCSVM achieves the best performance by obtaining the largest Ge-
ometric mean defined as

√
TPR ∗ (1− FPR), where TPR is the

true positive detection rate and FPR is the false positive detection
rate. However, we found that if the training dataset is not perfect,
a good classification result can not be obtained although OCSVM
is robust to outliers to a certain extent. In order to solve this prob-
lem, an FOCSVM is employed in this work and small weights are
given to the training points corresponding to the outliers. The fea-
tures to train the FOCSVM classifier and used to make decisions are
obtained from the variation of a person’s 3-D angle and centroid in-
formation. Two cameras are used to reconstruct a 3-D voxel person
and the 3-D angle and centroid information are then obtained. The
structure of this paper is as follows: Section II describes how the
video features are extracted. The concept of FOCSVM is introduced
in Section III. Some experimental simulations are presented in Sec-
tion IV. Conclusions and suggestions for future work are given in
Section V.

2. VIDEO FEATURE EXTRACTION

We use 3-D features for the construction of the classifier, a table
look-up scheme is used to reconstruct the 3-D voxel person. A code-
book is built beforehand to obtain the relation between 2-D pixels
and 3-D ‘voxels’. Initially, we divide our 3-D room space into fixed
size voxels (2.5cm*2.5cm*2.5cm), which are nonoverlapping cubes.

From the 2-D coordinate of a pixel in the recorded frame [ιx, ιy]T ,
the undistorted coordinate [ux, uy]T on the focal plane can be ob-
tained from the camera calibration [8], where [·]T denotes vector
transpose. Moreover, we can also obtain the rotation matrix R and
translation vector t, which reflect the relationship between the real
world coordinate system and a camera-centered coordinate system
from the procedure proposed in [8]. After obtaining these values,
we can translate the origin of the camera-centered coordinate system
[0, 0, 0]T and the point on the focal plane [ux, uy, f ]T into the cor-
responding 3-D real-world coordinate by: z = R−1(c − t), where
z is the real world coordinate and c is the coordinate in the camera-
centered coordinate system.

So, for a pixel, a ray can be constructed and we can identify a set
of voxels that this ray intersects. The procedure is repeated for every
pixel in the 2-D frame for each camera and we can thereby obtain a
pixel-voxel table for each camera.

Two video cameras located at the corners of a room environment
are then used to record the video frames and we use the codebook
background subtraction technique [9] to obtain the foreground
human body region in these frames. When the silhouettes of a
person in the frames recorded by two cameras are extracted, for



each frame, we set the 3-D space voxels corresponding to the pixels
in the silhouette with the value ‘1’ by looking up the pixel-voxel
table, the remaining voxels are set to be ‘0’. In this way, a 3-D
binary matrix Vi

t is constructed for the ith camera at time t. An
intersection operation is then applied to the two 3-D matrices
obtained by both cameras to obtain a final matrix,Vt, with the
representation as Vt = Intersection(V1

t , V2
t ), an element of Vt is

one if both its counterparts in V1
t and V2

t are ones. The ‘1s’ region
in the 3-D matrix corresponds to a 3-D voxel person.
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Fig. 1: The procedure of constructing the voxel person by using two
cameras

The procedure of the 3-D voxel person reconstruction is shown in
Figure 1. We next consider the video feature extraction process.

2.1. Video feature extraction

The corresponding video features are then extracted after we obtain
the voxel person Vt. We know that a fall is usually a short activity
lasting less than 1s and the variations of orientation angle and cen-
troid in fall activities are different from those of other activities such
as lying or walking. So, we need to extract certain features which
can reflect the variations of orientation angle and centroid during a
short interval (here we use 1s) in order to recognize falls. In order to
obtain such a feature, firstly, we calculate the centroid position and
a value called gpsimt reflecting the similarity of the voxel person’s
primary orientation for every recorded frame.

The centroid of the voxel person at time t, ut = [xt, yt, zt] can
be obtained by: ut = ( 1

M
)
∑M

j=1 Vt,j , where M is the number of
voxels belonging to the human body region.

The sample covariance matrix used to define the eigen informa-
tion is: ( 1

M
)
∑M

j=1(V′t,j − ut)(V′t,j − ut)
T .

The eigenvalues and orthonormal eigenvectors of the covari-
ance matrix are calculated and the eigenvector corresponding to the
largest eigenvalue at time t is denoted as eigenvect and a value de-
noted by gpsimt is calculated by: gpsimt = max(eigenvect ·
〈0, 0, 1〉T ,−eigenvect · 〈0, 0, 1〉T ), where (·) represents the dot
product.

If the person is upright, the value is near unity; if he or she is on
the ground, the value is near zero. The value of gpsimt is in the
range of [0, 1].

We obtain three sequences sequence1, sequence2 and
sequence3 which represent the variations of the centroid’s hori-
zontal position and vertical position, and the orientation angle from
a video clip of one second. We firstly apply first order differ-
ences on each sequence, as: dsequencen(i) = |sequencen(i) −

sequencen(i + 1)|, where dsequencen is the first order difference
result for sequencen.

Next for dsequencen, we apply the discrete Fourier transform
(DFT) operation as:

DFTdsequencen(k) = abs(
∑

i

dsequencen(i)exp(−j∗2∗π∗i∗k/N))

(1)
where k=0,..,N-1, and N is the length of dsequencen.

Because the DFT amplitudes are invariant to time shifting, the
dsequencens with similar shapes but different time shifting will
have DFTdsequencens with similar magnitudes. That means for
the video clips which contain falls occurring at different times, the
extracted DFTdsequencen (n=1,2,3) magnitudes will be similar.

In our experimental setting, the frame rate is 15fps, the
lengths of sequencen, dsequencen and DFTdsequencen are all
15. For each video clip lasting one second, we calculate three
DFTdsequencens and sample the initial 5 coefficients for each
DFTdsequencen, the obtained 15 coefficients are then concate-
nated to form a 15-dimensional vector which is the video feature we
use for training or testing. From the experimental results, we show
that the video features for falls have similar patterns and differ from
those of other activities.

3. FUZZY ONE CLASS SUPPORT VECTOR MACHINE
CLASSIFICATION

The traditional one class support vector machine (OCSVM) is pro-
posed in [10]. The basic idea behind OCSVM is that given a data set
drawn from an underlying probability distribution P for the minor-
ity class, the OCSVM estimates a function f that is positive in a re-
gion S and negative in the complement, where S is the ‘most-likely
region’– a subset of the input space such that a test point drawn from
P lies outside of S equals some a priori specified value between 0
and 1. In the application of fall detection, the minority class corre-
sponds to fall activities. We obtain the training video features from
the video clips containing the fall activities and use them to train an
OCSVM classifier. The classifier can then capture the ‘most-likely’
region where the falling video features fall. And if the test video
feature point is within this region, it is recognized as fall; otherwise,
it is regarded as non-fall.

For a non-separable dataset, a kernel OCSVM [10] can be used
to separate the mapped dataset in a high dimension feature space.
The strategy of a kernel OCSVM is to map the training data into
the feature space xi → Φ(xi) to separate them from the origin with
maximum margin. The popularly used kernels include Polynomial
kernel, Gaussian kernel and Tangent kernel. In this paper, we use
Gaussian kernel with the form K(x, y) = e−γ‖x−y‖2 .

To design the classifier, we try to solve the following quadratic
problem:

min
w,h,ρ

1

2
‖ w ‖2 +

1

ν`

∑
i

hi − ρ

subject to (w · Φ(xi)) ≥ ρ− hi, hi ≥ 0 (2)

Here, ν ∈ (0, 1] and ` is the number of training data samples. The
nonzero slack variables hi are introduced to allow for the possibility
of outliers (the data points which are not drawn from the distribution
P ).

For a new test point x, the decision function is: f(x) = sgn((w ·
Φ(x))− ρ), where sgn(·) is a sign function which yields the sign of
the term in the bracket.



Using multipliers ai, bi ≥ 0, we introduce a Lagrangian [11]:

L(w, h, ρ, a, b) =
1

2
‖ w ‖2 +

1

ν`

∑
i

hi − ρ

−
∑

i

ai((w · Φ(x))− ρ + hi)−
∑

i

bihi

We set the derivatives with respect to the primal variables w, h, ρ
equal to zero respectively and obtain:

w =
∑

i

aiΦ(xi) (3)

ai =
1

ν`
− bi ≤ 1

ν`
(4)

∑
i

ai = 1 (5)

According to the KarushKuhnTucker conditions (KKT) [11], the
following constraints are satisfied:

ai((w · Φ(x))− ρ + hi) = 0 (6)

bihi = 0 (7)

We substitute equations (3), (4) and (5) into the Lagrangian func-
tion and obtain a dual problem as:

L(w, h, ρ, a, b) =
1

2
‖ w ‖2 +

1

ν`

∑
i

hi − ρ

−
∑

i

ai((w · Φ(xi))− ρ + hi)−
∑

i

bihi

=
1

2

∑
ij

aiaj(Φ(xi) · Φ(xj)) +
1

ν`

∑
i

hi − ρ

−
∑
ij

aiaj(Φ(xi) · Φ(xj)) + ρ

− 1

ν`

∑
i

hi +
∑

i

bihi −
∑

i

hi +
∑

i

bihi

= −1

2

∑
ij

aiaj(Φ(xi) · Φ(xj))

min
a

1

2

∑
ij

aiajk(xi, xj)

subject to 0 ≤ ai ≤ 1

ν`
,

∑
i

ai = 1 (8)

Here ai is the component of vector a, k(xi, xj) = (Φ(xi) ·Φ(xj))
is the ‘kernel function’ (we use Gaussian).

According to the KKT condition [11], the decision function fol-
lows as: f(x) = sgn(

∑
i aik(xi, x)− ρ).

For the value of ρ, we can obtain it from the KKT condition. Ac-
cording to equations (6) and (7), we can see if ai and bi are non-
zero, the corresponding pattern xi satisfies: ρ = (w · Φ(xi)) =∑

j ajk(xj , xi).
However, in some real world applications (such as fall detection),

the effects of the training points are different. It is obvious that
we can not always obtain a perfect training dataset, some training
samples would be outliers and they should be less important than
other ‘good’ training samples in the design of the classiifier. In or-
der to reflect the importance of different training samples, we as-
sign each training data point with an associated fuzzy membership
and the training dataset becomes: (x1, u1), ....., (xN′ , uN′), where
N ′ is the number of samples in the training dataset. The fuzzy
membership ui which represents the likelihood of the correspond-
ing point xi being the target class is calculated as proposed in [12]:
ui = 1− ||xi−xmean||

rtarget
, where rtarget = maxi||xi − xmean||.

The constrained optimization problem of the fuzzy one-class
SVM is then formulated as:

min
w,h,ρ

1

2
‖ w ‖2 +

1

ν`

∑
i

uihi − ρ

subject to (w · Φ(xi)) ≥ ρ− hi, hi ≥ 0 (9)

From the similar procedure of solving the traditional OCSVM
problem, we can obtain the dual problem as:

min
a

1

2

∑
ij

aiajk(xi, xj)

subject to 0 ≤ ai ≤ ui
1

ν`
,

∑
i

ai = 1 (10)

4. EXPERIMENTS AND EVALUATIONS

The experiments were carried out in Loughborough University’s
Smart Room. Two cameras are located at the corners for which
the intersection of their covering spaces is the whole room space
(4.5m*3.5m*3m). The two cameras are connected to two PCs.
The StreamPix 3 software [13] is installed on the PCs to perform
video recordings and the format of the obtained video is AVI. Video
recordings are converted to consecutive 320*240 frames for further
processing by MatLab. A synchronizer which is connected to the
server is used to ensure the synchronization of the cameras’ record-
ings.

A stuntman simulates the fall and non-fall activities, and three
datasets (available from the first author) are recorded by each of the
four cameras respectively. The first dataset containing video clips
containing falls is used for training. The second dataset (23 falls
and 23 non-falls) is for validation purpose—-to aid in the learning
of the parameters of the FOCSVM. Finally, a test video dataset (46
falls and 46 non-falls) is recorded and used for evaluation of the
performances of the constructed classifiers.

A pixel-to-voxel table is pre-built for the two cameras, the compu-
tation amount for obtaining the human body voxels after background
subtraction only involves looking up two tables so that it can be real-
time. From the reconstructed voxel person, we can get the person’s
3-D centroid position and angle information. For a 1s video clip, we
can obtain the variations of the person’s 3-D centroid position and
angle values which are represented as sequence1, sequence2 and
sequence3 from 15 frames. From the procedure proposed in Sec-
tion 2.1, we can obtain the video features of the DFT amplitudes.
Figure 2 and 3 show the comparisons of video features of fall activ-
ities and non-fall activities respectively.
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Fig. 2: Video features of three fall activities confirming their similar
behavior

By visual inspection, we can see that the feature sequences for fall
activity are similar and different from those of non-fall activities.
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Fig. 3: Video features of five non-fall activities showing their vari-
ability and difference from one fall example (in blue)

The obtained features are fed into our FOCSVM for training and
testing. The validation dataset is used and a grid search method is
applied to obtain the optimal parameters ν and γ which maximize
the Geometric mean defined as

√
TPR ∗ (1− FPR) for this vali-

dation dataset.
Table 1 shows the fall detection results by using OCSVM and

FOCSVM under a perfect and three imperfect training datasets, the
perfect dataset is composed of 22 well obtained training samples
for fall activity, while the imperfect datasets are composed of the
same 22 well obtained samples and some poorly obtained fall train-
ing samples (due to some reasons, such as poor background sub-
traction result or incorrect 3-D person reconstruction), which can be
regarded as outliers.

Table 1: The performance comparison between OCSVM and
FOCSVM under perfect and imperfect training datasets

From Table 1, we can see the TPR, FPR and Geometric mean
are the same for OCSVM and FOCSVM with the perfect train-
ing dataset; however, for imperfect training datasets, the FPR of
OCSVM increases (so the Geometric mean decreases) with the num-
ber of the outliers while those of FOCSVM remain the same as the
obtained results from the perfect training dataset. This advantage has
been found for various other datasets with more outliers but these
three examples just provide appropriate illustration.

In order to visualize the classification result, we use principle
component analysis (PCA) to project the 15-dimensional features
into 2-dimensional space, and corresponding classifiers are built
up according to these 2-dimensional features. In Figure 5 the 2-
dimensional spaces of the two principle components extracted from
the length 15 feature vectors are shown on these plots, the two
axe pc1 and pc2 stand for the two principle components obtained
from PCA, the blue crosses correspond to falls and the red circles
correspond to non-falls for the test dataset, we can see that the 2-
dimensional projections of fall feature sequences are in a cluster
which is nearly non-overlapped with the projected non-fall feature
sequences. So, they are distinguishable and a proper boundary could
be constructed to enclose the cluster of fall samples.

One example is presented to show the comparison of OCSVM
and FOCSVM under a perfect training dataset and an imperfect
training dataset with one outlier. The decision boundaries for
OCSVM and FOCSVM are shown in red and blue respectively. We
can see that for the perfect training dataset, the obtained decision
boundaries are approximately similar (a); however, FOCSVM can
obtain a much accurate decision boundary compared to OCSVM
for the imperfect training dataset (b) and this accounts for the

lower FPR shown in Table 1 for the one outlier case. So, from this
example, FOCSVM appears more suitable to be used in the real
application of fall detection to cope with the uncertanties in the
training dataset.

Fig. 4: Two-dimensional feature spaces and decision boundaries for
OCSVM and FOCSVM

5. CONCLUSION

In this paper, we have proposed a new fall detection method based on
FOCSVM with novel 3-D features. A voxel person is extracted from
the 2-D human silhouettes obtained from the images of two cameras.
The video features which reflect the variations of centroid position
and orientation angle are extracted from a series of reconstructed
voxel persons during a time interval (1s). FOCSVM is used with the
obtained video features as the classifier. The experimental results
show as compared with the conventional OCSVM, the FOCSVM
can achieve a more accurate fall detection result under an imperfect
training dataset with outliers.
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