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ABSTRACT

Recent work in machine learning considers the problem of

identifying bird species from an audio recording. Most meth-

ods require segmentation to isolate each syllable of bird call

in input audio. Energy-based time-domain segmentation has

been successfully applied to low-noise, single-bird record-

ings. However, audio from automated field recorders con-

tains too much noise for such methods, so a more robust seg-

mentation method is required. We propose a supervised time-

frequency audio segmentation method using a Random Forest

classifier, to extract syllables of bird call from a noisy signal.

When applied to a test data set of 625 field-collected audio

segments, our method isolates 93.6% of the acoustic energy

of bird song with a false positive rate of 8.6%, outperforming

energy thresholding.

Index Terms— Audio segmentation, bird species identi-

fication, time-frequency segmentation

1. INTRODUCTION

Classification of bird species from audio is a recent appli-

cation of machine learning. Several methods have proven

successful in correctly labeling the species of single birds in

low-noise environments [4, 1, 2]. We propose a method of

pre-processing and segmenting noisy field recordings of bird

song, to isolate each bird syllable from the rest of the signal.

Bird song has a structure consisting of single-vocalization

syllables, many of which make up a song. The structure of

songs varies within bird species, but the structure of individ-

ual syllables remains relatively constant. Thus, many meth-

ods of species recognition are based on classification at the

level of syllables [3]. In ideal conditions, an audio recording

of bird song consists of sequential bird call syllables separated

by silence. Current methods of classification use the charac-

teristics of this audio signal, such as Mel-frequency cepstral

coefficients, to label each syllable in the audio signal as a bird

species [1].

The process of segmenting, or extracting syllables from

an audio signal is simple in ideal conditions. If bird call is the
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Fig. 1. Above: A noise-reduced spectrogram of a Swainson’s

Thrush and a Pacific-Slope Flycatcher. Below: The binary

mask generated by the proposed method. Each darkened re-

gion corresponds to a detected syllable of bird song.

only source in a signal, then increased audio energy will de-

note a syllable. In field conditions, this assumption does not

always hold. Rather than bird song alone, there may be many

sources of sound in a recording. Wind, streams, and other

background noise degrades the signal, and noises from other

animals and surrounding events interrupt bird song. Compli-

cating the issue, vocalizations from two or more individual

birds may occur simultaneously during a recording. How-

ever, accurate segmentation is essential for successful species

classification [4].

In noisy environments, classification attempts face two

challenges. First, time-domain segmentation based purely

on audio energy will introduce false syllables, corresponding

to non-bird noises. Second, whenever multiple birds sing at

once, time-domain segmentation will group mixtures of syl-

lables together, degrading classification accuracy. We have a

4 terabyte dataset of audio from automated recorders at sites

in the H.J. Andrews Experimental Forest. Recordings in this

dataset contain high noise and simultaneous bird syllables.

We propose a method of segmentation that addresses

these problems, using supervised machine learning in the

time-frequency domain. We transform input signals into a

spectrogram representation, then apply a supervised classifier

to create a binary mask labeling each time-frequency unit as
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either bird sound or background. This process allows us to

extract individual syllables of bird song, even when syllables

overlap in time. Fig. 1 shows such a binary mask. We evalu-

ate this binary mask against a manually-labeled ground truth

using a metric of true positive rate (TPR) versus false positive

rate (FPR), and a metric of energy-weighted TPR versus FPR.

Applied to our set of field recordings, our method achieves

90.5% TPR with 9.3% FPR (θ = 0.08) for the first metric,

and 93.6% TPR to 8.6% FPR (θ = 0.12) for the second. By

both metrics, the proposed method outperforms segmentation

by energy thresholding.

2. BACKGROUND

The proposed segmentation method is part of a system that

classifies bird audio recordings by species. Such classifica-

tion of bird audio data, from multiple sites in the field, can

provide presence/absence data to map bird species to loca-

tions and times. This data in turn can be used for the mod-

elling of bird species distributions and conservation planning.

A system based on such methods has the capability to provide

higher resolution data at less cost than manual surveys [1].

Numerous methods have been proposed to classify seg-

ments of bird call by species [2, 5, 6, 7]. In each example,

classifiers are applied to segments of audio data, each rep-

resenting a vocalization from a single bird. These segments

are obtained from the source audio through time-domain seg-

mentation. Graciarena, et al. use a simple voice activity de-

tection system to segment audio [5]. Lakshminarayanan, et

al. compute Kullback-Liebler divergence between the power

spectral density of each audio frame and the uniform distribu-

tion. Local minima of the KL divergence are used to identify

the boundaries of segments, and segments with the greatest

energy are classified [2]. Somervuo et al. apply an iterative

thresholding algorithm to find high-energy audio segments

[7]. These methods work well when input audio consists of

sequential single-species calls with minimal noise, but cannot

accurately segment noisy field recordings.

2.1. Random Forest

Our segmentation is based on supervised classification using

a Random Forest classifier. Random Forest (RF) is an en-

semble classifier consisting of a collection of decision trees

[8]. Given a set of training examples T , each tree hi in the

RF classifier is independently built from a bootstrap sample

selected randomly with replacement from T . Trees are con-

structed by recursively applying the following procedure:

• Take as input a set of examples T , where each Ti =
(x, y), x is a feature vector, and y is the corresponding

class label.

• If all labels y are the same, create a leaf node with the

value y.

• Select a random subset F of log2(k)+1 features, where

k is the number of features in x.

• For each feature d ∈ F , sort T on d and find the thresh-

old value θd that splits T into two sets Tleft and Tright,

such that the Gini index G(Tleft, Tright) is maximized.

• Choose the feature and threshold (d, θd) such that G is

maximized. If all possible values of G are equal, then

make a leaf node with the majority label. Otherwise,

create two child nodes by recursively applying the pro-

cedure using Tleft and Tright as input.

Each interior node of an RF tree corresponds to a test of the

form xd < θ. Traversing the tree with any input vector x
will lead to a leaf node, which contains a single class label

y. When classifying an input x, each decision tree in the RF

classifier casts a vote. The output label for x is equal to the

proportion of trees that voted for y.

3. PROBLEM FORMULATION

Our segmentation method begins by decomposing a time-

domain audio signal A(t) into a two dimensional time-

frequency spectrogram S. This involves separating A into

a set of overlapping frames {F0, F1, ...}. Each frame Ft cor-

responds to a set of values {A(t), A(t+ 1), ...A(t+ s− 1)},

where s is the number of samples in each frame. For each

frame Ft, a short-time Fourier transform is applied to gener-

ate coefficients {f0(t), f1(t), ...f s
2
(t)}. The spectrogram S

is composed from the magnitude of the coefficients of each

frame.

In segmenting a spectrogram S, we use a supervised clas-

sifier to assign a binary label to each element in S, corre-

sponding to whether the audio signal at that time and fre-

quency is bird sound or noise. The output of our method is a

binary mask overlaying the spectrograms. We consider each

contiguous positive-labeled region in this mask to correspond

to a bird syllable in the spectrogram. This approach allows us

to isolate the desired bird call signal from background noise,

and to separate distinct syllables that overlap in time but not

frequency.

4. PROPOSED METHOD

4.1. Preprocessing

In each input audio file, a Hamming window is first applied

to each frame. A short-time FFT is then applied with a frame

size of 512 samples, and an overlap of 256 samples between

each subsequent frame, transforming the signal into a time-

frequency spectrogram. A whitening filter is subsequently

applied to the spectrogram, to normalize the level of envi-

ronmental noise at each frequency. Frequency ranges below

1kHz contain little or no bird call [3], so a band-pass filter

removes frequencies under 1kHz.
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4.2. Random Forest Training

Our method requires as input a training set of audio files with

corresponding binary masks. Each audio file is converted to

a spectrogram, using the same parameters as the input data.

Time-frequency units covered by the mask are used as posi-

tive examples of bird sound when training the classifier. All

other elements, including silence, static noise, and non-bird

sound, are used as negative examples. The masks in this set

were created manually by visual and auditory examination of

each spectrogram and its corresponding audio. For the pur-

poses of training and evaluation, these masks are assumed to

be ideal binary masks corresponding to audible bird call. Our

implementation uses 40 RF decision trees, built from a set

of 500,000 randomly-sampled training examples, with a class

balance of 10% bird call and 90% noise examples.

4.3. Classification

In training and classification, a feature vector xt,f is extracted

for each time-frequency unit S(t, f) in the spectrogram. The

vector xt,f describes the spectral characteristics of a rectan-

gular window surrounding (t, f), and is defined by the fol-

lowing:

• The frequency value f

• The values within a rectangular window surrounding

(t, f)

S(i, j), i ∈ [t− tw, t+ tw], j ∈ [f − fw, f + fw]

centered at (t, f), where 2tw + 1 is the size of the win-

dow in the time dimension and 2fw+1 is its size in the

frequency dimension.

• The variance σ2 of the units in this window

σ2 =
1

(2tw + 1)(2fw + 1)

t+tw∑

i=t−tw

f+fw∑

j=f−fw

(Si,j − μ)2

where μ is the mean value in this window.

We use a tw value of 6 T-F units and a fw value of 12 units,

yielding a window spanning 192ms by 750hz in the T-F do-

main. In the classification process, a probability mask Mp is

generated by the outputs of the RF classifier, in which each

value Mp(i, j) corresponds to the fraction of RF trees that

labeled Si,j as bird call.

4.4. Output and Analysis

After classification, a Gaussian convolution is applied to cre-

ate a smoothed probability mask Ms.

Ms = Mp � g, where g(x, y) =
1

2πσ2
e−

x2+y2

2σ2

This convolution is applied with a square kernel of 17x17

time-frequency units, and σ = 3.0. After smoothing, the

probability mask is converted to a binary mask Mb by ap-

plying a threshold

Mb(x, y) = 1 if Ms ≥ θ, or 0 otherwise

where 0 ≤ θ ≤ 1. The value θ controls the trade-off between

false positive and false negative. A larger value leads to lower

false positive rate but higher false negative rate. The small-

est time-frequency regions identifiable as bird syllables had

a duration of approximately 160ms and a frequency range of

approximately 300hz. Any regions in the binary mask less

than 90% of this size are discarded from the final segmenta-

tion.

5. EVALUATION

The output of our method is a binary mask Mb over the time-

frequency representation of the input audio signal. Ideally,

each contiguous positive region in the mask represents one

syllable of bird call. However, it is often ambiguous whether

a region consists of one syllable or several. Thus, we evaluate

the binary mask itself, by comparing it directly to a human-

provided ideal mask. We evaluate the output binary mask Mb

against the manually-labeled ideal binary mask Mi with the

following two metrics:

• Time-frequency area metric: Find all labeled units

(i, j) such that Mb(i, j) = 1 and Mi(i, j) = 1. Define

the true positive count TP to be the number of units

found. The false positive value FP is similarly defined

for Mb(i, j) = 1, Mi(i, j) = 0, the true negative TN
for Mb(i, j) = 0, Mi(i, j) = 0, and the false negative

FN for Mb(i, j) = 0, Mi(i, j) = 1.

• Acoustic energy metric: Find all labeled units (i, j)
such that Mb(i, j) = 1 and Mi(i, j) = 1, as in the

previous metric. Define the true positive value TP to

be the sum
∑

S(i, j), (i, j) ∈ TP of all spectrogram

energy values in the true positive set.

For each of the two metrics, a true positive rate TPR =
TP/(TP+FN) and a false positive rate FPR = FP/(FP+
TN) are defined. We plot coordinate pairs (FPR, TPR)θ
for a varying threshold θ, to display the recall/precision trade-

off of the method.

Two energy thresholding methods are evaluated along

with the Random Forest method. The first is an energy

thresholding applied directly to the spectrogram S. Each unit

(i, j) in the output binary mask has a value 1 if S(i, j) > θ,

where 0 < θ < 1. The second method applies the same

Gaussian blur described in 4.4 to the spectrogram. The en-

ergy thresholding is then applied to the blurred spectrogram.
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Fig. 2. ROC curves of the time-frequency area metric.

The dataset used for all three methods is an annotated set

of 625 audio segments, each 15 seconds, in 16kHz PCM for-

mat. The audio segments are selected, two per hour, from a

24 hour recording at each of 13 sites across the H.J. Andrews

Experimental Forest. These data were recorded between May

and July 2009. Two-fold cross validation is used in evaluation

of the RF classifier.

In Fig. 2 and Fig. 3, the ROC curves of the RF method

are plotted against the energy thresholding methods, using

the area-based and energy-based metrics, respectively. The

thresholding method with Gaussian blur outperforms the di-

rect thresholding in both metrics. By both metrics, RF out-

performs spectrogram energy thresholding.

6. CONCLUSION AND FUTURE WORK

We proposed a method to segment syllables of bird call from a

noisy audio signal, based on a time-frequency representation

and a Random Forest supervised classifier. Our method pro-

duced a binary mask covering 90.5% of the time-frequency

area of bird syllables with a FPR of 9.3% (θ = 0.08), and

93.6% of the spectral energy of bird vocalizations with a FPR

of 8.6% (θ = .12), out-performing energy-based methods.

Future improvements to the method may include replacing

thresholding with a more complex region-growing algorithm

to more effectively separate concurrent syllables from sepa-

rate individuals. To apply the method to larger datasets, run-

time could be decreased by using a smaller set of features.

7. REFERENCES

[1] Forrest Briggs, Raviv Raich, and Xiaoli Z. Fern, “Au-

dio classification of bird species: a statistical manifold

Fig. 3. ROC curves of the acoustic energy metric.

approach,” in IEEE International Conference on Data
Mining, December 2009, pp. 51–60.

[2] B. Lakshminarayanan, R Raich, and X Fern, “Audio

classification of bird species: a statistical manifold ap-

proach,” in International Conference on Machine Learn-
ing and Applications, December 2009, pp. 53 – 59.

[3] A. Harma, “Automatic identification of bird species based

on sinusoidal modeling of syllables,” in IEEE Interna-
tional Conference on Acoustics Speech and Signal Pro-
cessing, April 2003, pp. 545–548.

[4] Seppo Fagerlund, “Bird species recognition using sup-

port vector machines,” EURASIP Journal on Applied Sig-
nal Processing, pp. 64–64, January 2007.

[5] Martin Graciarena, Michelle Delplanche, Elizabeth

Shriberg, Andreas Stolcke, and Luciana Ferrer, “Acous-

tic front-end optimization for bird species recognition,” in

IEEE International Conference on Acoustics Speech and
Signal Processing, March 2010, pp. 293 – 296.

[6] Chang-Hsing Lee, Chin-Chuan Han, and Ching-Chien

Chuang, “Automatic classification of bird species from

their sounds using two-dimensional cepstral coefficients,”

IEEE Transactions on Audio, Speech, and Language Pro-
cessing, vol. 16, no. 8, pp. 1541 – 1550, 2008.

[7] P. Somervuo, A. Harma, and S. Fagerlund, “Paramet-

ric representations of bird sounds for automatic species

recognition,” IEEE Transactions on Audio, Speech, and
Language Processing, pp. 2252 – 2263, November 2006.

[8] Leo Breiman, “Random forests,” Machine Learning, pp.

5–32, January 2001.

2015


