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ABSTRACT

This paper presents a signal processing tool for analyzing and ma-
nipulating digitized acoustic wave fields, based on a spatio-temporal
extension of the time—frequency representation space. The empha-
sis is on wave fields acquired with a 1-D linear array of equidistant
microphones (representing the spatial samples), but the basic formu-
lation is valid for the three dimensions of space. We start by defin-
ing a spatio-temporal extension of the short time Fourier transform,
in both continuous and discrete space and time, and then focus on
applications of the proposed representation. In particular, we show
that acoustic scenes with multiple sources can benefit from the use of
space—frequency analysis in applications such as source separation
(spatial filtering) and spatial audio coding (wave field coding). The
experiments suggest that there is a spatial window size for which the
performance of filtering and coding is optimal.

Index Terms— Time—frequency analysis,
analysis, source separation, spatial audio coding

space—frequency

1. INTRODUCTION

Digital acoustics is a field of digital signal processing (DSP) where
signals are spatio-temporal representations of digitized acoustic
wave fields. The wave field is typically recorded with an array of
microphones and reproduced with an array of loudspeakers, which
are the space-domain equivalent of signal samples [1, 2]. By repre-
senting the wave field as a discrete function of space and time, we
can use multidimensional Fourier analysis and DSP techniques to
process the entire wave field as a whole.

The spatio-temporal representation of the wave field is given by
the sound pressure p(r, t) at position r = (x,y, z) and time ¢. This
function can be derived from the wave equation, given by

2 2 2 2
(502 * s + s — 2 g ) ) = =006 = m)s(0) (1)
where §(r — rp)s(t) indicates that the wave field is generated by
a point source located at rp, = (xp,Yp, 2p), With source signal
s(t). A point source generates a spherical wave front that propa-
gates with speed c. Alternatively, p(r,t) can be expressed in the
spatio-temporal Fourier domain, using the definition

P(®,0) :/ /p(r,t)e*“"'”““dtdr 2)
R3 JR

where ® = ($,, Py, .) are the spatial frequencies in rad/m and 2
is the temporal frequency in rad/s.
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The radiation of sound, like many other phenomena in nature, man-
ifests in the form of harmonic patterns—by inducing harmonic
disturbances in the surrounding medium. This implies that p(r, t)
behaves harmonically across both space and time, and is there-
fore efficiently represented by P(®,(2) [3]. One particular trans-
form pair is known as the plane wave, characterized by the input
p(r,t) = 00+ Ur/) - Thig results in a single Dirac point cen-
tered at (®,Q) = (ufo/c,Qo), where Q is a fixed frequency
and u = (uz,uy,u) is the direction of propagation. The plane
wave is essentially a complex frequency that propagates as a plane
wave-front (i.e., a frequency with origin in the far-field); it is the
basic harmonic element of acoustic wave fields. Thus, the same way
signals are composed of frequencies, wave fields are composed of
plane waves'. The definition of plane wave, however, has an im-
portant limitation: it is unable to represent the curvature variations
across space that characterize spherical wave-fronts. This is related
to a problem encountered by the Hungarian mathematician Dennis
Gabor in 1946, when he realized that the Fourier transform was
not suited for representing the frequency variations that characterize
non-stationary signals, such as speech and music [4]. As he pointed
out, our everyday perception of sound is conditioned by the idea
of “changing frequencies” (think, for example, of the sound of a
police siren), which contradicts the strict definition of sinusoid as an
infinitely long function with a fixed frequency. Gabor proposed the
short time Fourier transform as a means to circumvent this limita-
tion, by essentially redefining the Fourier basis function e’*** into a
windowed version w(t)e’**. The short time Fourier transform has
since become the standard representation of audio signals.

The goal of this paper is to show that, in digital acoustics, we
can generalize Gabor’s concept of time—frequency analysis into the
plane wave domain, by redefining the spatio-temporal Fourier basis
e/ (T into a windowed version wy (r)w; (t)e? (T T | where
wy(r) is a 3-D spatial window function. This allows the wave field
to be represented in a space—frequency hyperspace, where frequency
resolution can be sacrificed for better spatial resolution, thereby pro-
viding a more efficient representation of curved wave fronts. We call
such representation the short space-time Fourier transform (SSTFT).

In addition to the theoretical concepts, this paper emphasizes
applications of space—frequency analysis. In Section 2 we introduce
the definitions of continuous and discrete SSTFT, and show some
important examples; in Section 3 we show how to design a spatial
filter in the Fourier domain, and how the size of the spatial window
improves the filtering operation; in Section 4 we show how to com-
press the acoustic wave field based on plane wave encoding, and how
the size of the spatial window improves the coding gain.

!n rigour, wave fields are composed of both plane waves and evanescent
waves, but evanescent waves have vanishingly small energy [1].
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2. SHORT SPACE-TIME FOURIER TRANSFORM

2.1. Continuous case

In this section, we start by working with the three dimensions of
space and then work solely on the z-axis. Given r = (x,y, 2), the
short space-time Fourier transform (SSTFT) of p(r,t) is given by
the 8-D function P(ro, to, ®, ) defined as

P(ro,to, ®,Q) = / pr, t)we (v —ro)we (t—to)e ? F T ddr,

3)
where [ denotes | = [g, [;. and, for simplicity, we(r) =
wy (x)wy (y)w:(z) (though the spatial window can also be non-
separable). The inverse SSTFT is defined as

p(r,t) = ﬁ / P(ro, to, ®,Q)e? T aQdd dtodry. (4)

where [ denotes [ = [y [5 [gs Jp- The inverse formula can
be interpreted as the continuous sum of all the “signal blocks” in-
dexed by (ro, o), and it requires that wy(r) and wy(¢) have unit
area [3]. The definition in (3) is characterized by a partitioning of the
(ro, to, @, Q)-hyperspace into uniform hypercubic regions spanning
the dimensions of space and time and the respective frequencies.

Example 1 (far-field source). A point source located in the far-field
generates a plane wave-front with direction of propagation u. If
the source signal is s(t), the sound pressure is given by p(r,t) =
s(t +u- r/c). Plugging p(r,t) into (3), yields [3]
Plro, 0, ®,0) = S(Q)W: (@ - u%) £ W3 (Q)e (@ Tot0t0)
)
where S(Q) is the Fourier transform of s(t), and * denotes convolu-
tion over Q. The functions Wy (®) and W(S2) are the Fourier trans-
Sorms of wr(r) and wy(t), and Wr(@ — u%) is defined such that
We(®—u) = Wa (@0 —ua 2) W,y (0 —uy L) Wa (. —u-2).
The result can be further simplified if the source signal is wide-

band and W(Q2) is a nascent Dirac function (which is typically the
case in practice). Then, [3]

P(ro,to, ®,Q) = S(Q)W,: («r- - u%)eﬂ"“"m. ©6)

This shows that the windowing effects caused by wy(r) tend to be
dominant over the effects caused by w; (t) Thus, we focus our at-
tention on the space—frequency representation of p(r, t).

Additionally, the emphasis of this paper is on wave fields ob-
served along the 1-D array axis, which, for simplicity, is represented
by the x-axis. Forro = 0, it follows that

P(®,,Q) =S(Q)W, <<I>z — cos a%) (7)

where uy = cos « represents the direction of arrival of the plane
wave-front to the x-axis. This result is illustrated in Fig. 1(a).

Example 2 (near-field source). A point source located in the near-
field at position v = r, and with source signal s(t) generates a
spherical wave-front defined by p(r,t) = s(t — ||[r — 1| /c)/
(47 ||r — rp||). On the x-axis, the SSTFT is approximated by [3]

P(®,,0) = S(Q) max {Wz (2. - cosa%),M(@z, Q)} ,

®)
where M (®,, Q) is a triangular mask given by
T ) ¢$7 Q
M(®,Q) = W=(0) ¢ )u ©))
0 ) (®ZV Q) € u7
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Fig. 1. Spatio-temporal Fourier transform of the sound pressure gen-
erated by a point source with s(¢) = d(¢) on the windowed array
axis. (a) A far-field source with angle of incidence o generates a
sinc-type function oriented towards the slope d®,/d2 = cosa/c.
(b) A near-field source with angle of incidence «(z) generates a
sinc-type function with its main lobe spread into a triangular region.
The minimum and maximum angles determine the aperture of the
“main lobe”, and the average of cos a(z) from = 0 to L deter-
mines the orientation of the notches.

with U = R\ {(®,,Q): @™ < &, < O™, Q >0}, and

point-symmetric for Q < 0. The parameters cos o, ®™, and P2
. 1 L min

are given by cosa =  [7 cos a(z)dz, P = cos

P = cos amin%. The result is illustrated in Fig. 1(D).

max Q
P

and

2.2. Discrete case

In discrete space and time (again, considering solely the x-axis), the
SSTFT can be implemented as a lapped 2-D block transform. For
this purpose, define p[n] = p[ns, n¢| as the uniformly sampled ver-
sion of p(x, t), where n, and n+ are the sample indexes in space and
time. The decomposition of p[n] into 50%-overlapped blocks p;[n]
can be written as

pi[n] = p[n], n:%i,...7g(i+2)—1, icl?, (10
where i = [ ] is the block index and I> C Z? is the respective

set of block indexes. The matrix N = [ J\?t] contains the num-

ber of samples N, and N; in space and time. The notation n =
%i,..., %(i+2)—1meansthatn¢ = %ix,..., %(iw—i—Q)—l
andny = Stiy, ..., 5t (i +2) — 1. The vector integers are defined
as0 = [J].1 =[], and so on. Note that, in order to handle the
blocks that go outside the boundaries of n, we consider the signal to
be circular (or periodic) in both dimensions.
Defining P[b] = P|[bs, b:] as the discrete SSTFT of p[n], the
direct and inverse transforms of each block are given by
Ni1-1
P[b]= > pnlgb,n], b=0,...,N1-1 11
n=0

Ni1-1

piln] = Z Pble[b,n], n=0,..., N1 —1. (12)
b=0
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Fig. 2. Design of spatial filters in the 2-D Fourier domain.

where ¢[b,n] = w[n]ejz"b‘Niln/\/ det N is the windowed 2-D
Fourier basis, with w[n] = wx[ne]w:[n¢] being the product of win-
dow functions in space and time.

The reconstruction of p[n] through overlap-and-add is given by

p[n] :Zpi[n— %Ni], ne 7z’ (13)
icl2
The SSTFT requires that wy[n] and wy[n.] satisfy the conditions
wn] = w[N — 1 — n] and w?[n] + w?[n + N/2] = 1 [3].

3. APPLICATION I: SPATIAL FILTERING

3.1. Filtering frequencies vs plane waves

One of the advantages of the Fourier transform in the design of dig-
ital filters is that it allows the interpretation of convolutional fil-
tering in terms of intuitive concepts. For instance, a filter can be
sketched in the Fourier domain such that it has a unitary response
for a given range of frequencies (pass-band) and a high attenuation
for the remaining frequencies (stop-bands). In digital acoustics, the
concept of filtering is more general, since the goal is to filter plane
waves rather than frequencies. Since plane waves are the basic el-
ements of acoustic wave fields, spatio-temporal filters can, in prin-
ciple, be designed to enhance or suppress entire sources in space,
rather than only specific frequencies. Using a similar reasoning, a
spatio-temporal filter can be sketched in the Fourier domain such that
it has a unitary response for every plane wave within a given range
of directions (pass-band) and a high attenuation for the remaining
plane waves (stop-bands), plus any additional magnitude and phase
constraints. If the goal is to filter an entire source, the ideal filter is
one that preserves the spectral region where most of the energy is
contained. Using the result in (8) and (9), the filter can be defined as

H['D]—{1  PEU (14)

0 ,belU.

Spatio-temporal filters of this type are non-separable, and therefore
require 2-D filter design techniques (e.g., Dudgeon et al. [5]). The
design can be performed in two steps: (i) specification of the ideal
filter, and (ii) approximation by a realizable filter. The filter can be
specified with parameters such as the cut-off angles of pass-band and
stop-band regions, the width of transition bands, and the order of the
filter. The filter design algorithm then translates the filter specifica-
tions into a realizable filter, usually through error minimization. This
procedure is illustrated in Fig. 2.

3.2. Spatial filtering in the SSTFT domain

In a scene with two (or more) sources, the design of spatio-temporal
filters in the 2-D Fourier domain is conditioned by a fundamental
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Fig. 3. Filtering co-linear sources in the SSTFT domain. (a) The
scene is composed of two co-linear white noise sources (one behind
the other)—one in the far-field, the other in the near-field—and a
linear array with 128 microphones. Co-linearity means that the pa-
rameter cos o of the two sources is equal. The resulting spectrum is
a sum of the spectral patterns in (7) and (8). (b) Using a spatial win-
dow of size L = 32, the aperture of the triangular region decreases,
resulting in less spectral overlapping. (c) With L = 16, the spectral
overlapping is further decreased, but the spatial frequency resolution
is considerably degraded. (d) The window size L = 32 produces the
best results: on the left is the input p[n]; in the middle is the filtered
near-field source; on the right is the filtered far-field source.

- Space - n,

trade-off: if there is overlapping between the two spectral patterns,
and the goal is to suppress the interfering source, the overlapping re-
gion can not be filtered without affecting the target source as well (in
particular, without affecting the curvature of the wave-front). One
solution to this problem is to split the array axis into smaller seg-
ments. This effectively reduces the aperture of the overlapping spec-
tral region, at the expense of a lower spatial frequency resolution.
Since the quality of the spatial filtering operation depends on these
two factors, we can expect that there is an optimal spatial window
size that properly balances the amount of spectral overlapping with
the spatial frequency resolution. An example is shown in Fig. 3.

4. APPLICATION II: WAVE FIELD CODING

4.1. Coding frequencies vs plane waves

Since the invention of MP3, the standard way of compressing au-
dio data has become mostly based on encoding frequency-domain
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Fig. 4. Coding of co-linear sources in the SSTFT domain. The scene
is the same as in Fig. 3, and P[b] is encoded using (15) and spatial
window sizes from L = 1 to 128. The results show that the rate-
distortion curve improves at first as we decrease the window size, but
then starts to degrade all the way down to L = 1 (which corresponds
to coding each channel independently). As in the filtering operation,
the best coding gain is obtained for L = 32. Notice the black dot
on the L = 1 curve, which represents the operating point of MP3.
For the same distortion, the bit-rate achieved simply by changing the
window size to L = 32 is 7 times lower.

coefficients, rather than the time-domain waveform. This strategy
was heavily influenced by the fact that the human auditory system
analyzes sound in terms of frequencies, and that certain frequencies
are more relevant than others on a perceptual level. If the audio data
contains multiple channels, the typical assumption is that the chan-
nels are highly correlated and therefore can be jointly encoded. The
correlation criteria can be either mathematically motivated or per-
ceptually motivated (e.g., based on the ability of humans to localize
sound sources in space [6]).

In digital acoustics, the coding strategy is considerably differ-
ent: instead of encoding the multichannel audio data parametrically
as correlated signals, the data is encoded non-parametrically in the
spatio-temporal Fourier domain. In other words, instead of jointly
encoding frequencies, we are encoding plane waves, since they are
the basic harmonic elements of the acoustic wave field. Plane waves
can also be encoded using perceptual criteria, based on a combina-
tion of frequency masking models and spatial masking models [7].
The purpose here, however, is not to discuss the advantages of dif-
ferent coding criteria, but the influence of space—frequency analysis
in the overall coding efficiency—in particular, the effects of the spa-
tial window size. Therefore, in our experiments, we use a coding
strategy based on traditional rate-distortion analysis.

We define the quantization and de-quantization operations as

: |Pa[b)

Po[b] = | SF[b] | P[b]|| and P[b] = eq SEb]

where || denotes rounding to the closest lower integer, SF[b] are

the scale factors of each coefficient, and ¢ = sign {P[b]}. The

purpose of the scale factors is to scale the coefficients of P[b] such

that the rounding operation yields the desired quantization noise in
the reconstructed coefficients P[b].

To determine the number of bits R[b] required to encode the
quantized coefficients, we associate the amplitude values to a Huft-
man code book similar to the one used by the MPEG standard [8],

15)
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where code words are organized such that less bits are used to de-
scribe lower amplitude values. Using the MSE distortion metric, we
estimate the rate-distortion function D(R) with the parametric pair

N1-1 1 N1-1
_ _ L ATATV2
R= 3 Al and D= g 3 n —pl)* (10

where R and D are functions of SF[b], with 0 < SF[b] < co.

4.2. Wave field coding in the SSTFT domain

Similarly to what happens in the spatial filtering operation, the pro-
cess of encoding plane waves is conditioned by the size of the spatial
window. The reason is that the wave-front generated by each source
has a different curvature along the array axis. According to (9), win-
dow segments that are closer to the source exhibit a wider (less com-
pact) spectral pattern compared to segments that are farther away
from the source. This means that far-field spectral patterns contain
less information than near-field spectral patterns, and therefore can
be encoded more efficiently. Using space—frequency analysis along
the array axis, the curvature variations of the wave-front can be better
exploited in order to obtain more compact spectral patterns. On the
downside, reducing the spatial window size also degrades the spatial
frequency resolution. So, again, we can expect that there is an opti-
mal spatial window size that results in the highest coding gain. An
example is illustrated in Fig. 4.

5. CONCLUSIONS

In this paper, we show through a worst-case scenario (co-linear
sources) that the use of space—frequency analysis in digital acoustics
improves the performance of spatial filtering and wave field coding.
In both experiments, we found that a spatial window with 25% the
size of the microphone array produces the best results: (i) in spa-
tial filtering, the two sources are better separated; (ii) in wave field
coding, a coding gain of 7 is achieved for an MSE similar to MP3.
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