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ABSTRACT

In this paper, we consider power spectral density estimatidan-
dlimited, wide-sense stationary signals from sub-Nyqga@&npled
data. This problem has recently received attention frorhiwithe
emerging field of cognitive radio for example, and solutitrave
been proposed that use ideas from compressed sensing athé-the
ory of digital alias-free signal processing. Here we degelacom-
pressed sensing based technique that employs multi-carsgtiag
and produces multi-resolution power spectral estimateshatrar-
ily low average sampling rates. The technique applies totsgpléy
sparse and nonsparse signals alike, but we show that wheridbe
sense stationary signal is spectrally sparse, compressesing is
able to enhance the estimator. The estimator does not eegjginal
reconstruction and can be directly obtained from a stréoghard
application of nonnegative least squares.

Index Terms— power spectral density estimation, multi-coset
sampling, compressed sensing, nhonnegative least squares

1. INTRODUCTION
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can be computed atrbitrarily low sampling rates We also show
that the method'’s solutions fall within two categories degirg on
whether one assumest) is spectrally sparse. (The notion of spec-
tral sparsity is defined in Section 2.) A surprising discgverthat
the proposed PSD estimator can take the form of a nonnedetise
squares estimate regardless of the sparsity(6f. Because of the
structure of the problem, we can recover a sparse solutibarfn(t)

is assumed sparse) by simply finding a least squares solnttead

of resorting to more complicated sparse approximationrtegtes,
e.g.¢; minimization.

CS based spectral estimation has recently gained attestion
found application in cognitive radio systems, e.g., [7].enhthey
are used to monitor a crowded radio spectrum searching tteruti-
lized bandwidth. The proposed estimator also shares magcts
with digital alias-free signal processing (DASP) [8, 9]dan partic-
ular, can be viewed as a type of DASP spectral estimator. ifke |
with DASP is briefly examined in Sections 2 and 3.

We begin by giving a brief overview of alias-free and mulbiset
sampling in Section 2. Then, in Section 3, we present the BSD e
timator and provide two numerical examples in Section 4. dfe ¢
clude in Section 5.

A number of compressed sensing (CS) structures have been pro

posed for sub-Nyquist sampling of continuous-time sigifikist].*
All of these systems extend CS theory and serve as viableanech
nisms to “compressively” acquire these types of signalsndio
rently, research has focused on finding new ways to directly p
cess CS measurements (once acquired) to infer or extractiaf
tion without having to reconstruct the original signal & Nyquist
samples. For example, in [5] Davenport et al. consider thelde
mental tasks of detecting, classifying, and estimatingmeiistic
signals in Gaussian noise from within the “compressed” donieo-
gether, these two lines of research attempt to realize otteeafen-
tral goals of CS theory—to directlgcquire and procesthe salient
information in a signal (where possible) without interneagli data
compression or signal reconstruction steps and in turmease the
efficiency and the capability of current signal acquistigstems.

In this paper, we further develop and blend these ideas and pr
pose a novel “compressive” power spectral density (PSDhasbr
for sub-Nyquist sampled wide-sense stationary (WSS) nansig-
nalsz(t). The method utilizes the multi-coset (MC) sampler, origi-
nally proposed by Feng and Bresler [1], and relies on thetlfeatthe
Fourier transform of a WSS signal is a (nonstationary) whigse
process [6] to form a linear system of equations whose swisti
represent the power in various spectral bands(¢f. The estimates
are therefordinite resolution approximationto the true PSD that

*This research was funded DTC Grant 0164.
1We include MC sampling in this list because of its simili@st to the
more recent CS techniques, despite the fact that it signtficaredates CS.

2. ALIAS-FREE AND MULTI-COSET SAMPLING

Alias-free sampling. Alias-free sampling is a type of non-uniform
sampling technique where the set of sampling instdntg satis-
fies certain properties such that the spectrum of the reguttis-
crete WSS process avoids aliasing and/or yields consiB@btesti-
mates [8,9]. Typically, the s€t,, } is a stochastic point process (e.g.,
a Poisson point process) that is statistically indepenalethe signal.
The advantage of such methods, in comparison to uniform lsagnp
lies in the fact that aliasing can be avoided even when theagee
sampling rate falls below the Nyquist rate. In fact, comsistlias-
free PSD estimators are possible with arbitrarily low sangptates
(although such estimates may require long acquistion Jiggs

Alias-free PSD estimators often take a form similar to tlast
dard periodogram defined for uniform sampling. For examigle,
ting z(t) be a real WSS stochastic process with zero mean and PSD
P,(w), the following estimator?, (w) is known to be a consistent
estimate ofP,(w) when the sampling s€ft,, } is a Poisson point
process [8]:
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where )\ denotes the rate parameter of the Poisson process and the

window functionwx (¢) controls the variance of the spectral esti-
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Fig. 1. Multi-coset sampler implemented as a multi-channel syste

mate. The proposed method outlined below accomplishesathe s
feat as alias-free PSD estimators in that it produces PSDastrs
at arbitrarily low sampling rates using MC sampling and C&ve
ery techniques.

Multi-coset sampling. Multi-coset sampling is a periodic nonuni-
form sub-Nyquist sampling technique for acquiring sparsetim
band signals [1]. Amultiband signalz(¢) is a bandlimited,
continuous-time, squared integrable signal that has allin{ost)
of its energy concentrated in one or more disjoint frequeveyds
(of positive Lebesgue measure). gpectrally sparsemultiband
signal is a multiband signal whose spectral measure is slal
tive to the overall signal bandwidth. If, for instance, déetactive
bands have equal bandwid# Hz and the signal is composed of
K disjoint frequency bands, then a sparse multiband signahés
satisfyingK B << W, wherelV/2 is the bandwidth of(¢) and W

is therefore the Nyquist frequency.

For the remainder of this section, teft) denote a deterministic
sparse multiband signal. For a fixed time interVathat is less than
or equal to the Nyquist period and for a suitable positivedet L,
MC samplers sample(t) at the time instants = (kL + ¢;)T for
1<i<q k=0,1,.... The time offsetg; are distinct, positive
real numbers less thah and are known collectively as the multi-
cosetsampling pattern The system thus collects < L samples
in LT seconds, or equivalently, exhibits an average samplirgafat
q/LT Hz. Here we sef” equal to the Nyquist period = 1/W,
thereby referencing the system’s sampling rate to the Nyqate.
Multi-coset samplers are parameterizeddhy., and{c;}, and the
system design depends on conditioning them properly torerssic-

cessful recovery of:(t) from the output samples. MC samplers are

most easily implemented as multichannel systems wherenehan
shifts z(t) by ¢;/W seconds and then samplesiformly at W/L
Hz (see Figure 1).

Using standard properties of the Fourier transform and th

discrete-time Fourier transform [10], we obtain a freqyetiemain
description of the output sequenag$k) = x(kL/W + ¢; /W),

1@(61“%) =
v LEGE) o
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restrictYi(ej“%) to one period. Here we choose to restticto
[-7W/L,7W/L) to obtain
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fori = 1,...,q, wherel, denotes the indicator function. Note
that the restriction td—7W/L,7W/L) removes the dependence

onw in the summation limits since within this intervh;l(ej“%) is

a linear combination of a particular (finite) set of spectagments

of z(t). We can therefore write this expression in a matrix-vector
formulation

2(w) = ®s(w) &
where
2i(w) = e TV o o @
W ox,
@, = e LM @3)
sl(w):X(w—Zﬂ'%ml)l[_%’%) (4)
fori=1,...,¢,1=1,...,L,andm; = —|3(L+ 1)| + 1.

In MC sampling, (1) serves as the base equation for the recon-
struction ofz(¢). Support recovery, however, relies on forming the
covariance matrix o&(w). As shown in the next section, our pri-
mary interest in the covariance matrix is not in using it tooreer the
support ofs(w), but rather using it to estimate the PSDugf).

3. MULTI-COSET PSD ESTIMATION OF WSS SIGNALS

Key ideas. Let z(¢) be a complex WSS process with PSR (w)
and letR,, denote the integrated covariance matok z(w),

R, 2 /jz E[z(w)z" ()] du )
s /jz Es(w)s (w)] dw | " )
= ®R, d", 7

whereE[-] denotes the expectation operatéf,denotes Hermitian
transpose anRs is the integrated covariance matrix of the spectral
segments irs(w). We begin by recalling the fact that the Fourier

dransform (appropriately defined) of a WSS random proagssis

itself a nonstationary white noise process (in frequendth) eovari-
ance function [6, p. 418],
Rx(w,v) =EX(w)X*(v)] = 21 P (w)d(w — v), (8)

where* denotes complex conjugacy. This fact, along with (4), imply
that the integrand in (6) equals
Elsk(w)s] (w)] = 20 P (w)dk.i, 9)

whered;,; denotes the Kronecker delta function aRff’ (w) repre-

whereY; (e ¥ ) denotes the discrete-time Fourier transform of thesents the PSD of the random process

sequencey; (k), X (jw) denotes the Fourier transform of¢), and
|-] denotes the floor function. The summation limits are finiteafo

givenw because:(t) is assumed bandlimited. Becadséej“%) is
periodic with period2wW/L, we can, without loss of information,

su(t) = o(t)e?E M % Wsing W gy

2Unlike the formulations in [1], we introduce expectatiorerdbecause
the signals are random processes.



ie., Pé”(w) is the PSD of a shifted, ideally low pass filtered ver- ¢(¢ — 1) + 2 < L, provided certain conditions o# and the size
sion of z(¢). To understand (9), consider the case wkes [ and  of the spectral support are satisfied. We do not pursue tlwweec

w € [-nW/L,7W/L). Then conditions here; we instead focus on the derivation of a @& st
spectral approximation in this setting.
Ellsi(w)]’] = E []X(w —2r%my) ﬂ A sparse representation fercan in theory be computed by solv-
ing thedo minimization problemy = argmin||v||o subject to (12).
= QWPQEL)(w). It is thus tempting, following standard compressed sengiagtice,

to replace it with a simplef; minimization problem. This step is un-

Whenk 75 Lt foIIc_)ws directly fr_om _(8) thatisy.(w)s; (w)] = 0. necessary, however, because (12) has additional struttatreim-
Thus Ry is a matrix whose main diagonal elements represent th?)lifies the problem.

power in theL spectral segments af(t), First, observe that the unknown power spectrais by defini-

2w 2w tion nonnegative. Second, recall that the rowsloénumerate the

[*WW + (- 1)T’ —mWHi— )7 l=1,...,L possible differences, — ¢, and that the row representing the dif-

ferencec, — ¢, = 0 is a row of ones. The first point means that

and whose off-diagonal elements are zero. Collectivelgretfore,  we are fundamentally interested in solving a nonnegatiaessprep-
the diagonal elements @& form a finite resolution approximation resentation problem. The second point serendipitousbyvalius to
to P, (w). This fact is the basis of the estimator introduced below:compute a sparse solution using nonnegative least squatesuty
We estimateR., from a finite set of MC samples and invert (7) to explicity imposing a sparsity constraint [11]. The reasethat the
obtain estimates of the total power within these spect@ingmts.  row of ones measures tlie norm ofv, and thus a nonnegative least
We first, however, further consider the structuréRaf. squares solution automatically promotes a sparse soluties in
essence get the a sparse solution for free.

Exploiting covariance structure. The diagonal nature dRs has
significant implications for how we should solve (7). Witlethew  PSD estimation. We now want to estimate the multiscale ap-
indexingk = q(a — 1) + b (1 < a,b < ), let us rewrite (7) as proximation to Pr(w) outlined above using a finite set of MC
samples{y;(k)}, k=0,...,N—1,i=1,...,9q. To do so, we
re-express (5) in terms of the samples. By applying the élisetime
Fourier transform’s orthogonality property [10, pp. 90;9t.can be

L
u; £ [Rylap = Z‘@a,lq’;,z[Rs]z,l

=1

shown that
S27 (o . oo
= (W/L)* Y e T cam ™Ry, (10) _ oV [ Gy Cm
2 [Reim = 27— g_wa (k= 2ymk = )|,

where againn; = [—3(L +1)] + I. We can write (10) concisely where the notatiom; (k — <) denotes a fractional shift of the se-
in matrix-vector form, quencey; (k). With a finite number of samples, we estim#tg as

u= 9"y, (11) i
whereu = (ui, ..., Uy(q_1)/241), Wiy = (W)2e 9 F (camcr)m Ra]im = 2ﬁ% > ik - %)yfn(k - Cfm), (14)
andv = diagRs) with k=1,...,42) + 1 (¢ odd) and k=0
l=1,...,L. To determineRs from R, and hence infePl(.”(w), where here the fractional delays can be computed by a fradtio

we need to solve (11). This requires tHaank(¥) > L. The delay filter at baseband frequencifkz is then used with the meth-
maximum number of distinct differences — c; equals@ +1, ods described above to invert (12) to obtain the finite reégmilPSD
therefore we knovRank(¥) < aa=1) 4 1. est?matesf/. _ This two st_ep process comp_rises our prc_)posed PSD
As we are assuming thaft) i52comp|ex while we know that estlmator. leg DASP, this estlmatqr can yield PSD gsﬂmafear-
must be real we can double the number of equations by solving:  Pitrary resolution (scale) and at arbitrarily low samplages.
There are two sources of error for this estimator. The finsvde
Re(u) | _ [ Re(®) 12 from estimatindR, from a finite amount of data. The second derives
Im(u) | — | Im(®) (12) from the aApproximate least squares solution. It is straighd to
show thatR,, is an asympotically unbiased estimatorRf; thus
Suppose the MC sampling pattefx } is chosen such that asN increases the PSD estimate becomes more accurate on average
(provided (12) can be inverted).
Rank ({ ;%e(\Il) }) =q(¢g—1)+2. (13)
m(¥)
4. NUMERICAL EXAMPLES
Then as long ag and L satisfyg(¢— 1) +2 > L, we can invert (12) ) _ _ o
using the pseudoinverse Bfand retrieveR from R,. If (13) holds ~ Example 1. Let z(¢) be white Gaussian noise bandlimited:0
asL grows, itis clear that we can retrieve a finite resolutionrapp 12 With two 40 Hz stop bandsif’ = 1000 Hz). Consider &5
mation toP, (w) with any sampling rate, given appropriatgalues. ~ channel MC sampler where each channel samp(epat a rate of
If either L or g is held fixed while the other is allowed to vary, the 10 HZ overa 2000 sec window (= 25, L = 100, average sampling

above inequality establishes a minimum average sampliegthat rate of250 Hz). In this scenario, the channels sample at a rate that
is required to successfully obtain a PSD approximation. is ten times smaller than the Nyquist rate with the resofutibthe

estimator beingV/L = 10 Hz. Becausej(¢ — 1) +2 > L in
Exploiting covariance structure and signal sparsity. Suppose this example, we can compute the estimator regardless e
now P, (w) is the PSD of a sparse multiband signal. As sueh, tral sparsity ofP, (w) and can invert (12) using either the pseudoin-
admits a sparse representation for which we can solve evem wh verse or a nonnegative least squares approach. Figuresgtalies
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Fig. 2. The plots show two compressive PSD estimates in compatdgeeriodograms (top panels) computed from a realizatiaheobriginal
(simulated) random procesgt). Here, the periodograms can be considered to be the truésoalé approximations that the compressive
estimates are estimating. The left hand plots derive fromrasparse PSD with spectral holes; the right hand plotveléom a sparse

multiband signal.

these facts. One could identify this example as a rudimgrntag-
nitive radio scenario, where the task is to identify spéctrales”

to exploit. Figure 2 shows two finite resolution periodogsacom-
puted from the original (simulated) input random proce&s. For
our purposes, these periodograms can be considered to tieugie
representations of the finite resolution PSD approximattbe com-
pressive PSD estimates are estimating. Comparing the essipe
PSD estimates to these periodograms shows that the corinpress
timates may be more than sufficient to detect spectral holes.
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possible to develop a similar estimator for the modulatedielvand
converter.
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