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ABSTRACT

Causal processing of a signal’s samples is crucial in on-line appli-
cations such as audio rate conversion, compression, tracking and
more. This paper addresses the problem of causally reconstructing
continuous-time signals from their samples. We treat a rich variety
of sampling mechanisms encountered in practice, namely in which
each sampling function is obtained by applying a unitary operator
on its predecessor. Examples include pointwise sampling at the out-
put of an anti-aliasing filter and magnetic resonance imaging, which
correspond respectively to the translation and modulation operators.
Such sequences of functions were studied extensively in the context
of stationary random processes. We thus utilize powerful tools from
this discipline, to derive a causal interpolation method that best ap-
proximates the commonly used non-causal reconstruction formula.

Index Terms— Causality, sampling, stationary sequences.

1. INTRODUCTION

Sampling and reconstruction of signals play a crucial role in signal
processing and communications. During the last several decades,
sampling theory has enjoyed rapid development [1, 2] due in part to
fruitful fertilizations from other disciplines, such as wavelet theory,
approximation theory and optimization. While these recent develop-
ments found widespread use in image processing, their deployment
in unidimensional applications, such as audio sampling-rate conver-
sion, is less common. One reason for this seems to be the relatively
few studies treating causality constraints within the above frame-
works, which becomes crucial in on-line applications.

Causal recovery of signals from their samples was mainly ad-
dressed in the context of spline interpolation and uniform pointwise
sampling. Several heuristic methods were developed and analyzed
in [3, 4, 5] for modifying the non-causal pre-filter, which is at the
heart of cubic spline interpolation, into a causal counterpart. In [6],
an H∞ optimization approach was proposed for approximating the
non-causal pre-filter by a causal one. Causal interpolation was also
studied in [7] from an approximation-theory perspective.

In modern sampling theory, sampling of a signal x is often de-
scribed by an evaluation of inner products cn = ⟨x, sn⟩ with a set
of sampling functions {sn}. In this paper, we study causal sampling
problems with a special type of structure of the sampling functions,
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which we term U-invariance. Specifically, we concentrate on situ-
ations in which the sampling functions are obtained from a single
generator s as

s0 = s and sn+1 = Usn , n ∈ Z (1)

where U is some unitary operator. Examples include the transla-
tion, modulation, and dilatation operators, which are used in classi-
cal shift-invariant (SI) sampling problems, in magnetic resonance
imaging (MRI), in Gabor analysis, and in wavelet analysis. The
special case in which U is a translation operator has been studied
extensively in the sampling literature and corresponds to uniform
sampling at the output of an anti-aliasing filter. For this scenario,
a wide variety of non-causal recovery techniques have been devel-
oped. Non-causal recovery with an arbitrary U was studied in [8].

2. MATHEMATICAL BACKGROUND

The complex conjugate of a scalar a ∈ C is denoted a. Throughout
the paper, H stands for a separable Hilbert space with inner product
⟨·, ·⟩ and induced norm ∥ · ∥. The closed linear span of a set of vec-
tors {sn} in H is written span{sn}. The Hilbert space of complex
square integrable functions on the real axis R is denoted by L2(R).
The Fourier transform of x ∈ L2(R) is defined by

x̂(ω) =
∫
R x(t) e

−iωt dt , ω ∈ R

and the discrete-time Fourier transform (DTFT) of a sequence cn in
ℓ2 is defined by

ĉ(eiθ) =
∑

n∈Z cne
−iθn , θ ∈ [−π, π] .

Moreover, T = {z ∈ C : |z| = 1} is the unit circle in the complex
plane C, and for 1 ≤ p ≤ ∞ the common spaces of Lebesgue
integrable functions on T are denoted by Lp(T).

Most of our development is based on the theory of stationary
sequences (see, e.g., [9]). A sequence s = {sn}n∈Z of vectors in H
is called stationary if ⟨sm+k, sn+k⟩ = ⟨sm, sn⟩ for all m,n, k ∈ Z,
i.e. if the inner product ⟨sm, sn⟩ depends only on the difference m−
n. The sequence rs(n) = ⟨sn, s0⟩, n ∈ Z, is called the covariance
function of s and its DTFT Φs(e

iθ) is called the spectral density of
s. A sequence s is stationary if and only if there exists a unitary
operator U on H and vector s ∈ H, uniquely determined by s, such
that sn = Uns for every n ∈ Z. We therefore say that s is generated
by (U, s).

Two stationary sequences s and w are said to be stationary cor-
related if ⟨sm+k, wn+k⟩ = ⟨sm, wn⟩ for all m,n, k ∈ Z. In this
case, the sequence rs,w(n) = ⟨sn, w0⟩, n ∈ Z, is called the cross-
covariance function of s and w and its DTFT Φs,w(eiθ) is referred
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Fig. 1. Shift-invariant sampling with sampling period a.

to as the cross-spectral density. Two sequences s and w are station-
ary correlated if and only if they are generated by the same unitary
operator U.

3. U-INVARIANT SAMPLING AND RECOVERY

A simple model for a practical sampling device comprises a pre-
filter s(−t) followed by an ideal sampler [10], as depicted in Fig. 1.
Assuming that the signal x and the function s are both in L2(R), the
nth sample is given by

cn =
∫
R s(t− na)x(t) dt = ⟨x, sn⟩ ,

where sn(t) := s(t− na) is the nth sampling function. The closed
linear span of the sampling functions {sn}n∈Z is termed the sam-
pling space S , which is, in this case, a shift-invariant (SI) space.

SI sampling can be considered a special case of a more general
acquisition paradigm, where a signal x in an arbitrary Hilbert space
H is measured by a sequence of sampling vectors {sn}n∈Z in H
that are generated by successive application of some unitary opera-
tor U as in (1). Clearly, in the SI case U is the translation operator
Ta : s(t) 7→ s(t− a). Other frequently employed operators include
modulation Ma : s(t) 7→ s(t) eiat, which is used in MRI and in
Gabor analysis and dilatation Da : s(t) 7→ |a|−1/2s(t/|a|), which
is used in wavelet analysis. We term this general setting U-invariant
sampling. One may readily notice that the sampling functions as-
sociated with a U-invariant sampling device form a stationary se-
quence, as defined in Section 2.

A common task in signal processing is that of recovering a
continuous-time signal x ∈ H from a sequence of its generalized
samples c = {cn}n∈Z taken with a U-invariant sampling device.
In the SI setting the recovery problem is typically approached by
employing a series of the form

x̃(t) =
∑

n∈Z dnv(t− na) =
∑

n∈Z dn(T
n
av)(t), (2)

with some predefined reconstruction kernel v(t) [1]. The expansion
coefficients d = {dn}n∈Z are often chosen such that the recov-
ery x̃(t) is consistent with the measured samples in the sense that
⟨x̃, sn⟩ = cn for all n ∈ Z [10].

In the more general setting of U-invariant sampling it is reason-
able to replace the SI reconstruction formula (2) by its U-invariant
generalization

x̃(t) =
∑

n∈Z dn (Unv)(t) . (3)

The sequences s = {Uns}n∈Z and v = {Unv}n∈Z are stationary
correlated in this case. In [8] it was shown that consistent recovery in
this setting is unique if the cross-spectral density Φs,v(e

iθ) associ-
ated with s and v satisfies |Φs,v(e

iθ)| ≥ A > 0 for all θ ∈ [−π, π).
In this case, dn is obtained by filtering the samples with a linear filter
whose transfer function is

ĥnc(e
iθ) =

1

Φs,v(e−iθ)
. (4)

The overall recovery scheme, therefore, comprises a digital correc-
tion filter followed by a digital-to-analog reconstruction stage, as
shown in Fig. 2 for the special case of SI sampling.

v(t) x̃(t)

∞∑

n=−∞

δ (t− na)

ĥ(eiω)cn

dn

Fig. 2. Reconstruction after digital correction.

4. CAUSAL RECOVERY

A major drawback of the consistency approach is that the correction
filter (4) is generally non-causal. Our goal is to design a filter h(k)
whose impulse response vanishes for every k ≤ n, for some n ∈ Z.
More concretely, we would like to approximate the coefficient dn of
the consistent recovery by a coefficient d̃n, which is determined only
by the past samples {ck}k≤0.

The coefficient dn can be written as

dn =
∑
k∈Z

ck hnc(n− k)

=
∑
k∈Z

⟨x, sk⟩hnc(n− k)

=
⟨
x,

∑
k∈Z

hnc(n− k)sk
⟩

= ⟨x,wn⟩,

where wn = Unw with w given by

w =
∑

k∈Z hnc(−k) sk . (5)

This representation allows a simple interpretation of our task. Given
the past samples ck = ⟨x, sk⟩, k ≤ 0, corresponding to a stationary
sequence generated by (U, s), we would like to produce an estimate
d̃n of the generalized sample dn = ⟨x,wn⟩ for some n ∈ Z, cor-
responding to the stationary sequence w = {wk}k∈Z generated by
(U, w) such that the error

|dn − d̃n| = |⟨x,wn⟩ − d̃n| (6)

is minimized.

4.1. Causal Estimation of Generalized Samples

Unfortunately, (6) depends on x, which is unknown. To eliminate
this dependency, we instead seek an estimate d̃n resulting in minimal
worst-case error over the set

B = {x ∈ H : ∥x∥ ≤ L, ⟨x, sn⟩ = cn ∀n ≤ 0}

of signals that could have generated the observed sequence of past
samples. Here L is an arbitrary bound, which is placed merely to
ensure that the error cannot grow indefinitely. As we will see, its
value does not affect the solution.
Proposition 1: Let s be a sequence in a Hilbert space H. Then the
unique solution of the problem

argmin
d̃n

max
x∈B

|⟨x,wn⟩ − d̃n| (7)



is given by

d̃n = ⟨x,PS0wn⟩ , (8)

where PS0wn is the orthogonal projection of wn onto the past sam-
pling space S0 := span{sk : k ≤ 0}.

A proof for the case in which the past sampling functions {sn}n≤0

form a frame appears in [11]. A proof for the general case can be
found in [12].

Note that (8) does not depend on the bound L. However, it seems
to depend on x, which is unknown. Nevertheless, d̃n of (8) can be
written explicitly as a linear combination of the past samples, which
are given. Indeed, by the definition of S0, we can write

PS0wn =
∑∞

k=0 γk s−k (9)

for some sequence of coefficients γ = {γk}∞k=0 (which depends on
n). Consequently,

d̃n =
⟨
x,

∑∞
k=0 γk s−k

⟩
=

∑∞
k=0 γk c−k . (10)

Interestingly, the min-max estimator (10) is linear in the past sam-
ples, although we did not restrict ourselves to linear schemes in (7).

Since the orthogonal projection is self-adjoint, one obtains from
(8) that d̃n = ⟨PS0x,wn⟩. This allows the interpretation that the
optimal estimate d̃n is obtained by first approximating the signal x
by its orthogonal projection onto the past sampling space S0, and
then sampling this approximation with the sampling function wn.

For general sequences s and w, it might be complicated to ob-
tain an explicit expression for the coefficients {γk}∞k=0. However, if
s and w are stationary correlated, as is the case in our setting, then
the solution is well known from the theory of stationary stochastic
sequences. Specifically, assume for simplicity that Φs(e

iθ) ≥ A >
0 for almost all θ ∈ [−π, π). Then, the coefficients γk of (9) are
given by the inverse DTFT of the causal Wiener filter (see e.g. [9])

Γn(e
iθ) =

1

Φ+
s (eiθ)

{
Φw,s(e

iθ) eiθn

Φ+
s (eiθ)

}
+

. (11)

Here, Φ+
s ∈ L2(T) denotes the spectral factor of the density Φs,

which is the function satisfying Φs(e
iθ) = |Φ+

s (e
iθ)|2 and whose

inverse DTFT is a causal stable sequence. The operator {·}+ :
L2(T) → L2(T) sets the past coefficients of its argument to zero
in the time domain, i.e{∑∞

k=−∞ αke
−iθk

}
+
=

∑∞
k=0 αke

−iθk .

To summarize, (10) and (11) imply that the optimal estimator of dn
is obtained by feeding the samples cn into the filter Γn(e−iθ) corre-
sponding to (11).

4.2. Application to Causal Recovery

We now utilize (11) to approximate the noncausal consistent recov-
ery method using a causal digital correction filter. To do that, we
need to express Φw,s(e

iθ) in terms of the kernels s and v. Substitut-
ing (5), rw,s(n) becomes

rw,s(n) = ⟨wn, s0⟩

=
⟨∑

k∈Z

hnc(n− k) sk, s0
⟩

=
∑
k∈Z

hnc(n− k) rs(k) .

In the Fourier domain, this relation is given by

Φw,s(e
iθ) = ĥnc(e−iθ)Φs(e

iθ) =
Φs(e

iθ)

Φs,v(eiθ)
(12)

where we used (4). Substituting (12) into (11), and using the fact
that Φs(e

iθ) = |Φ+
s (e

iθ)|2, we conclude that the min-max causal
correction filter is given by ĥmx(e

iθ) = Hn(e−iθ), where

Hn(e
iθ) =

1

Φ+
s (eiθ)

{
Φ+

s (e
iθ) eiθn

Φs,v(eiθ)

}
+

. (13)

This filter, in general, does not lead to a consistent recovery. How-
ever, among all causal filters, the expansion coefficients it produces
are closest to those of the consistency approach for the worst-case
signal x.

An interesting phenomenon occurs when the sampling functions
{sn} are orthogonal. This happens, for example, in the SI setting,
when s(t) is the rectangular kernel rect(t/a) or the ideal low-pass
filter sinc(t/a). In this situation, Φ+

s (e
iθ) = A for some constant

A ̸= 0 and thus Hn(e
iθ) reduces to {eiθn/Φs,v(e

iθ)}+, which cor-
responds to a simple truncation of the impulse response of the non-
causal filter ĥmx(e

iθ) of (4). However, when {sn} are not orthogo-
nal, simple truncation is in general no longer optimal.

5. EXAMPLE: CAUSAL SPLINE INTERPOLATION

To demonstrate the causal recovery technique discussed above, we
next apply it to causal spline reconstruction. A spline x(t) of degree
N is a piecewise polynomial with the pieces combined at knots, such
that the function is continuously differentiable N − 1 times. It can
be shown that any spline of degree N with knots at the integers can
be generated using (2), where v(t) = βN (t) is the B-spline function
of degree N , defined by

βN (t) = (βN−1 ∗ β0)(t) (14)

and β0(t) is the unit square

β0(t) =

{
1 − 1

2
< t < 1

2
;

0 otherwise,

In other words, βN (t) is obtained by the (N + 1)-fold convolution
of β0(t).

As a simple example, consider the SI setting of Fig. 1 with
a sampling period of a = 1 and with the sampling filter s(t) =

β1(t). The frequency response of β1(t) is given by β̂1(ω) =
sinc2(ω/(2π)). Therefore, s(t) can be considered a nonideal anti-
aliasing low-pass filter whose cutoff frequency is slightly smaller
than the sampling rate ω = π, as shown in Fig. 3. We would like to
approximate the signal x(t) using (2) with1 v(t) = β0(t), where the
coefficients dn are obtained by causal processing of the samples cn.

Using the convolution property (14) of B-splines, we have

rs,v(n) = ⟨sn, v0⟩ =
∫
R β

1(t− n)β0(t) dt = β2(n).

As shown in [13], the Z-transform of β2(n) is given by (1 −
z2z

−1)(1 − z2z)/(−8z2), where z2 =
√
8 − 3. Therefore, the

noncausal consistent filter (4) is given by

ĥnc(z) =
1

Φs,v(z)
=

−8z2
(1− z2z−1) (1− z2z)

, (15)

1Reconstruction with β0(t) is a shifted-by-1/2 version of zero-order hold
recovery, also known as nearest neighbor interpolation in image processing.
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Fig. 3. Frequency response of the filter β1(t).

and corresponds to the impulse response

hnc(n) =
−8z2
1− z22

z
|n|
2 .

A naive solution for obtaining a causal correction filter follows
from truncating the impulse response hnc(n) [3, 4, 5]. This approach
results in a filter whose Z-transform is

ĥtr(z) =
−8z2
1− z22

1

1− z2z−1
. (16)

Our framework, however, dictates a different strategy. Specifically,
we have that Φ+

s (z) = a1(1− z1z
−1), where z1 =

√
3− 2 and a1

is some constant [13]. Substituting this expression into (13) leads to

ĥmx(z) =
−8z2

1− z1z−1

{
1− z1z

−1

(1− z2z−1) (1− z2z)

}
+

=
−8z2
1− z22

(1− z1z2)− z1
(
1− z22

)
z−1

1− (z1 + z2) z−1 + z1z2z−2
. (17)

Figure 4 compares the above methods in the task of recover-
ing a randomly-generated spline x(t) of degree 2. In this example,
the noncausal solution (15) attains a signal-to-noise ratio (SNR) of
20 log10(∥x∥/∥x − x̃nc∥) = 8.67dB. The truncated filter (16) suf-
fers from a significant degradation, attaining an SNR of 7.59dB. By
contrast, our min-max solution (17) results in an SNR of 8.21dB,
which is only slightly worse than the noncausal approach. Note that
the SNR was computed for a long time segment, only a small portion
of which is shown in Fig. 4.

6. CONCLUSIONS AND EXTENSIONS

In this paper we explored the use of the theory of stationary stochas-
tic sequences to solve the problem of causal recovery of determinis-
tic signals from their U-invariant samples. Thereby we focused on
the consistency approach of signal recovery. However, the proposed
methodology may be applied to other reconstruction techniques, as
well. Moreover, the same framework can be harnessed to predict fu-
ture samples of a signal based on its past or causally interpolating
missing samples. Furthermore, well-known results from the theory
of stochastic processes can be used to characterize those cases in
which the proposed causal recovery technique yields zero estimation
or prediction error for every possible signal [12].
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