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Abstract

We develop sub-Nyquist sampling systems for analog sigoatisprised of several, possibly overlapping, finite
duration pulses with unknown shapes and time positionscigiffi sampling schemes when either the pulse shape
or the locations of the pulses are known have been previaleshgloped. To the best of our knowledge, stable and
low-rate sampling strategies for continuous signals thmat superpositions of unknown pulses without knowledge
of the pulse locations have not been derived. The goal inpghfer is to fill this gap. We propose a multichannel
scheme based on Gabor frames that exploits the sparsitgmdisiin time and enables sampling multipulse signals
at sub-Nyquist rates. Moreover, if the signal is additibnaksentially multiband, then the sampling scheme can be
adapted to lower the sampling rate without knowing the bawations. We show that, with proper preprocessing,
the necessary Gabor coefficients, can be recovered fromathplss using standard methods of compressed sensing.
In addition, we provide error estimates on the reconstucéind analyze the proposed architecture in the presence
of noise.

I. INTRODUCTION

One of the common assumptions in sampling theory suggestsnttorder to perfectly reconstruct a bandlimited
analog signal from its samples, it must be sampled at the Nyate, that is twice its highest frequency. In practice,
however, all real life signals are necessarily of finite diorg and consequently cannot be perfectly bandlimited,
due to the uncertainty principlel[1]. The Nyquist rate isrtiere dictated by the essential bandwidth of the signal,
that is by the desired accuracy of the approximation: thédrighe rate, meaning the more samples are taken, the
better the reconstruction.

In this paper we are interested in sampling a special clasisneflimited signals: signals consisting of a stream
of short pulses, referred to as multipulse signals. Sinegtiises occupy only a small portion of the signal support,
intuitively less samples, then those dictated by the esderandwidth, should suffice to reconstruct the signal.

There are two standard approaches in the literature to sasaph functions. One is to acquire pointwise samples
and approximate the signal using Shannon'’s interpolatiom@la [2], [3]. The reconstruction error can be made
sufficiently small with just a finite number of samples, whéae signal is sampled dense enough. However, this

strategy results in many pointwise samples that are zeadirg to unnecessary high rates. The second, is to collect
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Fourier samples and approximate the signal using a truti¢adarier series. However, the Fourier transform does
not account for local properties of the signal, hence thishod cannot be used to exploit signal structure and
reduce the sampling rate. Both strategies require the &otransform of the signal to be integrable and do not take
the sparsity of the signal in time into account. Moreovegaxpointwise samples needed for Shannon’s method
requires implementing a very high bandwidth sampling filkdere we show that these problems can be alleviated
using Gabor frames [4].

Gabor samples, which are inner products of a function witfieshand modulated versions of a chosen window,
are a good compromise between exact pointwise samples amegFsamples. In particular, we show that all square-
integrable time limited signals, without additional cainaiis on their Fourier transforms, can be well approximated
by truncated Gabor series. Furthermore, Gabor samples) taith respect to a window that is well localized in time
and frequency, provide information about local behavioaony square integrable function and reflect the sparsity
of a function either in time or frequency. The price to pay islightly greater number of samples necessary for
approximation, that comes with using frames, namely, aveplete dictionaries. The use of frames is a result of
the fact that Gabor bases are not well localized in both timefeequencyl[5]. In all three approaches (pointwise,
Fourier, Gabor) the number of samples necessary to refrasearbitrary time limited signal is dictated by the
essential bandwidth of the signal and the desired apprdidmaccuracy.

Recently, there has been growing interest in efficient sengpbdf multipulse signals[ 6], 17],.18],[19]. This
interest is motivated by a variety of different applicaBmsuch as digital processing of certain radar signals, which
are superpositions of shifted and modulated versions af@espulsel[7],[[10],[[11]. Another example is ultrasound
signals, that can be modeled by superpositions of shiftesiores of a given pulse shape [9]. Multipulse signals
are also prevalent in communication channels, bio-imagamgl digital processing of neuronal signals. Since the
pulses occupy only a small portion of the signal supportjiiively less samples should suffice to reconstruct the
signal.

Prior works mentioned above assumed that the signal is ceeapof shifts of a single known pulse. Such signals
are completely characterized by a finite number of parameted fall under the class of finite rate of innovation
(FRI) signals introduced in_[6]. The sampling schemes psepdn [8] operate at the minimal sampling rate required
for such signals, determined by the rate of innovatidn [6]tHis case without noise, perfect recovery is possible
due to the finite dimensionality of the problem.

In this paper we consider sampling of multipulse signalsmwheither the pulses nor their locations are known.
The pulses can have arbitrary shapes and positions, and veala@. The only knowledge we assume is that our
signal is comprised ofV pulses, each of maximal widt’. Despite the complete lack of knowledge on the signal
shape, we show that using Gabor frames and appropriategsingesuch signals can be sampled in an efficient and
robust way, using far fewer samples than that dictated by\gruist rate. The number of samples is proportional to
WN, that is, the actual time occupancy. More precisely, we radmlit4—'Q'W N samples, wher€) is related
to the essential bandwidth of the signal amé (0, 1) is the redundancy of the Gabor frame used for processing.

When the signal is additionally sparse in frequency withyosilessential bands of width no more th@xy, the
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sampling rate can be further reduced. For such signals, we aboutsy ', WNS samples, wher&, is
related to the widtl)y, of the essential bands of the signal. In contrast, Nyquaitd-sampling in both settings
requires abouf)’ 3 samples, where is the signal duration. If the signal occupies only a smaltipa of its time
duration, such thaty='WN < 3, respectively2Q};.S < Q, then our scheme results in a substantial gain over
Nyquist-rate sampling.

The sampling criteria we consider are: a) minimal samplaig that allows almost perfect reconstruction, b) no
prior knowledge on the locations or shapes of the pulsescandmerical stability in the presence of mismodeling
and noise. To achieve these goals we combine the well esttedlitheory of Gabor frames| [4] with compressed
sensing (CS) methods for multiple measurement systems [13], [14]. Our scheme consists of a multichannel
system that modulates the input signal in each channel wiparametric waveform, based on a chosen Gabor
frame, and integrates the result over a finite time interwd. show that by a proper selection of the waveform
parameters, the Gabor samples can be recovered, from wiadignal is reconstructed. We also consider the case
in which the signal exhibits additional sparsity in freqagnas is common in radar signals, and show that using
our general scheme the sampling rate can be further rediioacbcover the signal in this case we solve two CS
problems. We then prove that the proposed system is robusiise and model errors, in contrast with techniques
based on exact pointwise samples.

Our development follows the philosophy of recent work inlagaCS, termed Xampling, which provides a
framework for incorporating and exploiting structure irakog signals to reduce sampling rates, without the need for
discretization([15],[[16]. Xampling combines standardlagasampling methods with CS digital recovery techniques.
A pioneer sub-Nyquist system of this type is the modulatedelvsand converter (MWC) introduced in_[17] based
on the earlier work of[[18]. This scheme targets low rate damgmf multiband signals. Sub-Nyquist sampling is
achieved by applying modulation waveforms to the analogiingior to uniformly sampling at the low rate.

Another system that falls into the Xampling paradigm is @8] which treats multipulse signals with a known
pulse shape. The proposed sampling scheme is based on tmuwaveforms as in the MWC. However, while in
the MWC the modulations are used to reduce the sampling etdéve to the Nyquist rate, i [8] the modulations
serve to simplify the hardware and improve robustness.

Gabor frames were recently used to sample short discreseguh [19]. The authors analyzed standard CS
techniques for redundant dictionaries, and applied tlesialts to radar-like signals. Finite discrete multipuigmals
were also treated il [20] where the authors modeled the Isigisaconvolutions of a sparse signal with a sparse
filter, both sparse in the standard basis@f. The important difference between [19], [20] and our workHat
the former handles discrete time signals. In contrast, oethod directly reduces the sampling rate of continuous
time input signals without the need for discretization.

The paper is organized as follows. In Sectigh Il we introdtiee notation and basic problem definition. Since
the main tool in our analysis is Gabor frames, in Secfioh e wecall basic facts and definitions from Gabor
theory and show that truncated Gabor series provide a goprbedmation for time limited functions. Based on

this observation, in Sectidn ]V, we introduce a sub-Nyqgeamnpling scheme for multipulse signals. In Secfidn V
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we show that our system can also be used to efficiently sanaplardlike signals, who are sparse in time and
frequency. Sectionh VI points out connections to recenthetlped sampling methods, while Section]VIl is devoted
to implementation issues. The important part of our design@abor windows, which we review in Sectibn ViIIl.

In particular, we summarize several methods to generatgaotly supported Gabor frames. We demonstrate our

theory by several numerical examples in Seclioh IX.

Il. PROBLEM FORMULATION AND MAIN RESULTS
A. Notation

We will be working throughout the paper with the Hilbert spaaf complex square integrable functiohs(R),
with inner product

o= [ T e d foral f.ge Ly(R)

whereg(t) denotes the complex conjugategdt). The norm induced by this inner product is given|b|2 = (f, f).

The Fourier transform of € Ly(R) is defined as
for= [ s

and is also square integrable Wi|tbﬂ|2 = f]l2-
A main tool in our derivations are Gabor frames, which we eavin Sectior 1ll-A. Two important operators

that play a central role in Gabor theory, are the translatiod modulation operators defined fojw € R as

Tof(t) = f(t —x), Muf(t) =" f(t),

respectively. The compositioh/,, T, f (t) = e*™! f(t — z) is called a time-frequency shift operator and gives rise
to the short-time Fourier transform. For a fixed windgw L2(R), the short time Fourier transform gfe Ly (R)
with respect tog(t) is defined as

Vol (x,w) := (f, MuTeg) -

Many derivations, and especially input-output relatiomsdur sampling systems, will be presented in the compact
form of matrix multiplications. We denote matrices by balcdé capital letters, for examp(®, D, and vectors by
boldface lower case letters, suchxasz.

Our recovery method relies on CS algorithms. An importarioman this context is that of the restricted isometry
property (RIP). A matrixC is said to have the RIP of ordé, if there exists) < 6 < 1 such that

(1= 8)[ull} < [ICull3 < (1+8)[ul3

for all S—sparse vectora [21].
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Fig. 1: Schematic example of a multipulse signal wih= 6 pulses each of width no more thaii. In the example,

two of the pulses are overlapping.

B. Problem Formulation

We consider the problem of sampling and reconstructingatggnomprised of a sum of short, finite duration
pulses. A schematic representation of such a signal is thepin Fig.[1. We do not assume any knowledge of the
signal besides the maximum width (support) of the pulsesieMormally, we consider real valued signgl&) of

the form

N
f(t) = hn(t), where max |Supph,| < W . 1)
n=1

The number of pulse®’ and their maximal widtH?” are assumed known. The pulses may overlap in time, as in
Fig.[. We assume that(t) is supported on an intervé-3/2, 3/2] with NW < 3. Our goal is to recovey (t)
from the minimal number of samples possible.

Due to the uncertainty principle, finite duration functimamnot be perfectly bandlimited. However, in practice the
main frequency content is typically confined to a finite imtér We refer to such signals as essentially bandlimited.
More formally, we say thajf(¢) is essentially bandlimited, ar,—bandlimited toF = [—Q/2,Q/2], if for some
€q <1

R 1/2
([1Fra) <l @

The symbolF® denotes the complement of the dét The adjective ‘essential’ refers to the fact that the epefgy
f(w) outside[—Q/2,Q/2] is very small. We denote the set of multipulse signals (1elimited to[—3/2, 3/2]
and essentially bandlimited fe-Q/2, /2] by MP(N, W, 3,Q).

There are three interesting special cases that fall intortbeel [1). The first is wheh,,(¢) are shifts of a known
pulseh(t), so thath,(t) = o,h(t —t,) for somet,, o, € R. In this case, the problem is to firlV parameters,
the amplitudesr,, and shiftst,,. This setting can be treated within the class of finite raténobvation problems
[6], [8l, [9]. We return to this scenario in Sectign]VI and dliss the relation to our work in more detail. A second
class, is when the location of the puldeg(t) are known but the pulses themselves are not. The third, niffisutt
scenario, is when neither the locations nor the pulses avevknOur goal is to develop an efficient, robust, and
low-rate sampling scheme for this most general scenariowildater see that our system can be used to sample

signals from the other two cases as well, at their respeativémal rates. In SectiohlV we show that our system
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can be additionally used to reduce the sampling rate of daamdclass of\IP(N, W, 8, Q2), which are multipulse
signals whose frequency content is concentrated on onlyebfnds within[—/2,Q/2].
We aim at designing a sampling system for signals from theehddP (N, W, 5, Q2) that satisfies the following
properties:
(i) the system has no prior knowledge on the locations or ebhab the pulses;
(i) the number of samples should be as low as possible;
(i) the reconstruction from the samples should be simple;

(iv) the original and reconstructed signals should be close

C. Main Results

The proposed multichannel sampling method, depicted in[#igs a mixture of ideas from Gabor theory and
Xampling [16]. It consists of a set of modulators with fuiets ¢; ., (¢), followed by integrators over the interval
[—5/2,8/2]. The system depends on an appropriately chosen Gabor fratheedundancy degreg € (0,1),
generated by a compactly supported window that is well Ipedlin the frequency domain. This frame provides a
sparse representation f&fP (N, W, 3, Q). The modulating waveforms ,,, (¢), formally defined in[(I7), are different,
finite superpositions of shifted versions of the chosen Galilwdow. The goal of the modulators is to mix together
all windowed pieces of the signal with different weights,teat, a sufficiently large number of mixtures will allow
to almost perfectly recover relatively sparse multipulgmals. The resulting samples are weighted superpositions
of Gabor coefficients of the signal with respect to the chdsame. CS methods [12], [13], [14] are then used to
recover the relevant nonzero signal coefficients from thergsamples.

The number of rows in the resulting CS system is abbdtu—!; it is a function of the number of pulses
present in the signal and the redundancyf the frame. Since CS algorithms are used to recover theame
coefficients, the exact number of rows is dictated by the RIRstant of the matrix containing the coefficients of
the waveforms, and is given (4N p~tlog(8'/(4NW))). In the case of purely multipulse signals, the number
of columns is a function of the desired accuracy of the appration, and equals abo@’'WW. However, when
the signal is essentially mutiband, with bands of widthQy, then the number of columns can be reduced to
about2Q,, WS, proportional to the actual frequency content of the sigAalain, since CS methods are used in
the recovery process, the overall number of columns is tdidthy the RIP constant of the matrix containing the
coefficients of the waveforms, and is given ©42Q,, W.Slog(Q,, /(2924,5))). The quantitiess’, ' andQ),, are
related tos3, 2 and()},,, respectively, and depend on the chosen Gabor frame.

After finding the Gabor coefficients, we recover the signahgis dual Gabor frame. The functiq?(t) recon-

structed from the post-processed coefficients satisfies

I = flla < Coleq + €B)|| fll2 + Cilni |2 + Canzll2

where f(¢) is the original signaléo is a constant depending on the Gabor frame, gnik related to the essential

bandwidth of the chosen Gabor window. The first term is duénéosignal energy outside the essential bandwidth.
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The values ofn; andn; reflect the noise level in the signal (mismodeling error) #imel samples, respectively,
while the constant€; and Cs depend on the CS method used for recovery of the Gabor ceefticilf f(¢) is
perfectly multipulse and the sampling system is noise fteenn; = n, = 0. For multipulse signals that are

essentially multibandg, is related to the signal energy outside the essential bahdétn

IIl. SAMPLING USING GABOR FRAMES

We begin by recalling some basic facts and notions from Gttsary that will be used throughout the paper, and
then show how Gabor frames can be used to sample multipysalsiwith known pulse locations. In Sectionl IV

we expand the ideas to treat the unknown setting.

A. Basic Gabor Theory

A collection G(g, a,b) = {My Turg(t) = e*™®tg(t — ak); k,l € Z} is a Gabor frame for.»(R) if there exist

constant®) < A; < A < oo such that
ALl FI7 <37 HF My T 9)|* < As | f1?
klEZ

for all f € Lo(R). The frame is called tight, ifl; = A,. By simple normalization every tight frame can be changed
to a tight frame with frame bounds equal to one. Thereforeerlve talk about tight frames we will mean frames
with frame boundsd; = A, = 1. Every signalf € Lo(R) can be represented in some Gabor frame [4].

A Gabor representation of a signé{t) comprises the set of coefficienfs;,; } ez obtained by inner products

with the elements of some Gabor systéity, a, b) [4]:
2y = (f, My Tor g) = 82Mkbl<ﬁ M_akThi G) -

The coefficientsz;,; are simply samples of a short-time Fourier transformyf¢f) with respect tog(t) at points
(ak,bl). If G(g,a,b) constitutes a frame fak,(R), then there exists a functione Ly (R) such that anyf € Ly(R)
can be reconstructed frofey, ; }r,icz using the formula
f= Z 2i 1 My Tak 7y - 3
k,l€Z

The Gabor systeng (v, a,b) is the dual frame t@ (g, a,b). Consequently, the window(t) is referred to as the
dual of g(t). Generally, there is more than one dual windgg). The canonical dual is given by = S~1g, where
S is the frame operator associated wittr), and is defined bysf = ZkJEZ(f, My T 9) My, Tor, g- There are
several ways of finding an inverse 6f including the Janssen representationSofthe Zak transform method or
iteratively using one of several available efficient algoris [4].

Here we will only be working with Gabor frames whose windows aompactly supported on some interval
[-a/2,a/2] and lattice parameters = ua, b = 1/« for somep € (0,1). For such frames, the frame operator

takes on the particularly simple form

S(t) = _lg(t —ak)*.

kEZ
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Fig. 2: The relation betweefi and the shifts of the support gfwhenp = 1. When supf@yy g for somek, does

not overlap any of the pulses ¢f thenz;; = 0 for all ¢.

The frame constants can be computed4as= ess infS(t) and A, = ess supS(t). The canonical dual is then
v(t) = bS~1(t)g(t). For tight frames the dual atom is simpjyt) = A; 'bg(t). A necessary condition fa§ (g, a, b)
to be a frame forLs(R) is thatab < 1, while Gabor Riesz bases can only existaff= 1 [4]. Thus the ratio
1/(ab) measures the redundancy of Gabor systems.

Since one key motivation for considering Gabor frames is lttaio a joint time-frequency representation of
functions one usually attempts to choose the winddw to be well localized in time and frequency. While the
Balian-Low theorem[[5] makes it impossible to design GabwsR bases with good time-frequency localization,
it is not difficult to design Gabor frames with excellent l6zation properties. For instance, 4{t) is a Gaussian,
then we obtain a Gabor frame whenewér< 1. Therefore, to obtain a well localized window one needs ltoval
for certain redundancy. In Sectign Ml we discuss in defi@iv to construct frames and their duals with compactly
supported windows based dn [27], [23].

We consider windowg(t) that are members of so-called Feichtinger algebra, dermtes§ [24]. Such windows
guarantee that the synthesis and analysis mappings arelédamd consequently result in stable reconstructions,

and that the dual window is ii§,. Formally,

Sot= {7 € La®) |1V = //|V¢f(:v,w)|dxdw <o},

wherey(t) = e~ The norm inS, is defined ag|f| s, := IV, fl1. Examples of functions i, are the Gaussian,
B-splines of positive order, raised cosine, and aayR) function that is bandlimited or ani,(R) function that is
compactly supported in time with Fourier transformiin(R). Note, that the rectangular window is not a member

of Sy since its Fourier transform is not ih; (R).

B. Truncated Gabor Series

It is well known that time limitedL»(R) functions, whose Fourier transform is additionally in(R), can be
well approximated with a finite number of samples using a leowgeries. We now show that the same is true for
Gabor series, without assuming anything additional on tfea$ besides that it is square integrable.

Let G(g,a,b) be a Gabor frame witly(¢) compactly supported on an intenfala/2, a/2], a = pa andb = 1/«
for somep € (0, 1). The reason for using compactly supported windows is thag¢ery functionf(¢) time limited

to [—-3/2, 3/2], the decomposition of{3) reduces to

Ko
F= 3> aaMu Tk, 4
k=—Ko l€EZ
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where~(t) is a dual window andX, denotes the smallest integer such that the sunilin (4) cantdirpossible

non-zero coefficients, ;. The exact value of{ is calculated by

8 Vﬂﬂ_l

[
e + > — =
5 (Ko 1)& 5 = K %

The number of frequency samplésiecessary foe reconstruction is dictated by the pair of dual windolys~)

as incorporated in the following theorem, which is an extam®f Theorem 3.6.15 in_[24].

Theorem 111.1. Let f(¢) be a finite duration signal supported on the interyal3/2, 3/2] and ep—bandlimited
to [—/2,9Q/2] and letG(g, a,b) be a Gabor frame described above with the dual atpm Sy. Then for every
eg > 0 there exists anly < oo, depending on the dual window(t) and the essential bandwidths ¢ft) and
f(t), such that

Ko Lo
— My, T, H <C :
Hf kz > My Tany , < Colea +en)|f]2

=—Kpo l:—Lo
where Cy = C2 171150 llgll s, With Cap = (1 + 1/a)'/?(1 4 1/b)*/* a constant depending on the chosen Gabor

frame.

Similar estimates also appear in [25].

Proof: See AppendiX_A. [ |

The exact number of frequency coefficierits is dictated by the essential bandwidth g(f). More precisely,
if g.(t) is a[—B/2, B/2]—bandlimited approximation of(t) in Sy, that is|lg — gclls, < esllglls,, thenLy =
28] -1

Theorent1I.1 states that finite duration, essentially biamited signals, can be well approximated using just the
dominant coefficients in the Gabor representation.

The number of samples depend on the chosen frame and theaegafrthe approximation. To minimize the
number of samples for a chosen accuracy of the approximatierselect, > 1/2 (which reduces the number of
samples in time) and construct a window that is well localizefrequency (which reduces the number of samples
in frequency). Therefore, there is an interplay betweenrthmber of samples in the frequency domain and the
number of samples with respect to time. The total number dfoGaoefficients, meaning samples of the short-time
Fourier transform, is related to a somewhat larger intepvd’ /2, 8'/2] C [—3/2,8/2], where8’ = 3 + «, with
K=2Ko+1~ %, in the time domain and a larger intenfalQ' /2, Q'/2] C [-/2,Q/2], whereQY = Q + B,

with L =2Lg+ 1~ % in the frequency domain. Overall, the required number ofigas is

wo= (5] 1) (5] )
2a 2b
%EQ/:BIQ/M—I.
a b

When 4 is close to one, ang(¢) is well localized in frequency forming a tight frame, the rhen of required
samples is close t03. For a fixedy and a chosen accuracy of approximation, the number of frexyugamples in

a tight frame depends on the decay propertieg(af). Therefore, to minimize the number of channels, we need to
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Fig. 3: Schematic representation of a matixof Gabor coefficients in the case of multipulse signals, enléit,
and multipulse essentially multiband signals, on the rigirhpty circles denote zero values and crosses denote

small, but nonzero values af, ;.

choose a window(t) that exhibits good frequency localization. On the otherchdraving already chosen a frame
G(g,a,b), if we desire to improve the accuracy of approximation, ttiem numberL, of ‘frequency’ coefficients

has to increase.

C. Multipulse Signals with Known Pulse Locations

If o <« 3, and the signal is multipulse, then many of the Gabor coefficients are zero. Indeed, if the shift

g(t — ak) does not overlap any pulse ¢f¢) then

B/2 _ )
2k = (f, My Targ) = / ft)g(t —ak)e 2™t dt =0,
—B/2

for all I € Z. Therefore, when the locations of the pulses are known, wereduce the number of samples from
KL to ML, whereM < K is the number ofs, |k| < Ky, for which z;; # 0. To reduceM to minimum, one
needs to choose a Gabor frame that allows for the sparsessesyation off (¢) with respect to the indexk.

For signals fromMP (N, W, 3,Q), an optimal choice is an atom(t) that is supported ofi-W/2, W/2] and
shift parametersa = pW, b= 1/W for someu € (0, 1). In that case at mogu 1] shifts of g(¢) by ak = pWk
overlap one pulse of (¢). Indeed, when: = 1, at most two shifts of;(¢) overlap one pulse, as depicted in Hig. 2.

Whenyu < 1, at most[2u~1] shifts of supp overlap one pulse of (¢). This can be calculated from

%W< —W%jtuWKl:»Kl >u:11 Ky Ky s ot
—5 > 5 T uWKs= Ky < —p

Let Z denote the x L matrix of dominant Gabor coefficients. For functiofis MP(N, W, 8,Q) each column

Z[l) = [2-Koi,--->2K,1)7 Of Z has at mosf2,~1] nonzero entries. Moreover, all columi&gl] have nonzero

entries at the same places, as modulatiei'* applied to f(¢) do not change the positions of the pulses. The

matrix Z is schematically depicted in Figl 3. Therefore, the negggsabor coefficients can be obtained with only

ML ~2Q'WNp~! channels, wherd/ = [2u~']|N and L ~ Q'W.

D. Method Comparison

Since time limited functions can be reconstructed only tecedain accuracy, we refer to the minimal number

of samples as the minimal number required to reconstrucsitpeal with a desired accuracy. For araccuracy
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of approximation using the Fourier series and Shannon&rpolation [2], [3] methods, the minimal number of

samples is of ordef2” 3, whereQ)” is such that
| F@)do < elfla,

with F; = [—Q"/2,Q” /2] and we have to assume that L (R). For the above to be satisfied with= ¢, as in
@), Q" has to be greater than since||f|\2 < |\f||1. The approximation error using Fourier series is then glwen
o= 3 7(5) e, < X 17w ®
[1|<Lo [1|>Lo
WherefA(é) are the Fourier coefficients ard, has to be equal at leagt’3/2 to achieves approximation. When
the signal is multipulsel, cannot be reduced because the Fourier transform does notirdcior local signal
properties.
The approximation error using Shannon’s interpolationmigia equals
5O - SanOl< [ ()] dv, ©)
|w|>Q" /2

where K is the largest integer less thél5/2 and
SQ// Z f ( ) S|nd7TQN( k/Q”)) .
|k| <Ko

Fork > Ko, f (2—) = 0 asf(t) is of finite duration, so that abo@” 3 pointwise values of (¢) must be evaluated
to achieve: accuracy. If the signal is multipulse and the pulse locatiare known, then this number can be reduced
to NWQ" samples, with7Q)”” samples per pulse.

For a Gabor frame with redundangy we achieve: approximation with a minimal number of samples of order

'p'pu~! as long as the Gabor window(t) and its duak(t) are such that
1/2

(// |vgf<a:,w>|2d:cdw> < =l
E JFg

where £ = [-3'/2,8'/2] and F, = [-Q'/2,Q'/2]. The Q' is an enlargement of?, as in [2), by the essential
bandwidth[—B/2, B/2] of the windowg(¢), and 3’ is an enlargement of by the suppor{—W/2, /2] of the
window g(¢). Then,Q¥ = Q+ B andjg’ =3+ W.

Table[l compares the number of samples necessary for a gquoxamation of time limited signals and of

multipulse signals using these three methods. As can be fseenthe table, the Gabor frame has two main
advantages. The first is that it does not require strong detff)(w) for the reconstruction error to be bounded.
Second, this approach can be used to efficiently sample puldé signals with unknown pulse locations, as we
will show in the next section. In this case we need approxétgatQ’W N ~—! samples which is minimal with

respect to the chosen approximation accuracy and framendedicy. However, this amount increases slightly to

the order ofO(4Np~log(B'/(ANW))Q'W) due to the utilization of CS algorithms in the recovery psxe
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series
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interpolation

Gabor series with
G(g,a,b), ab=p

number of

~ Q"ﬁ

~ Q//ﬁ

~ QIBI,U/71

12

samples

number of

samples for
multipulse ~ Q"B ~Q'WN
signal with

~ 20 WNp~!

known pulse

locations

number of

samples for
multipulse ~ Q"B ~ Q"B
signal with

~AQWNp~!

unknown pulse
locations

approximation || (&) ©®
error

Theoren{ 11

TABLE |: Comparison of three methods for approximatihg(R) functions that are time limited tp-3/2, 5/2]
and essentially bandlimited fe-Q2/2,/2]. The second and third lines refer to multipulse signals itipulses,

each of width no more thai’. The methods are compared for the same accuracy of appriima

IV. SAMPLING OF MULTIPULSE SIGNALS

We now present a sampling scheme for functions fubtP (N, W, 3, Q) that reduces the number of channels

in a Gabor sampling scheme and does not require knowleddeedfulse locations.

A. Sampling System

Our system, shown in Fif] 4(a), exploits the sparsity of ipulse signals in time. The signdl(¢) entersJ M
channels simultaneously. In tl{g, m)th channel,f(¢) is multiplied by a mixing functiony; .., (¢), followed by an
integrator. The design parameters are the number of chaiféland the mixing functions; ., (¢), 0 < m < M -1,

0 < j < J-—1. The role of the mixing functions is to gather together a## thformation inf(¢) over the entire
interval [—//2, 5/2]. Namely, f(¢) is windowed with shifts of some compactly supported functiand all the
windowed versions are summed with different weights.

The functionsgy; ., (t) are constructed from the Gabor frame. IGdYy, a, b) be a Gabor frame with windowy(t)
supported on the interval-1W/2,1W/2], essentially bandlimited t¢—B/2, B/2], and with sampling parameters
a=pW andb=1/W for some0 < p < 1. Then

qj,m(t) = w;(t)sm (t) , ()
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q0,0(t)
wo(t) t=7m

a

s(=t) > Yom

8/2
— é/z(')dt X

jm w (1) o R
10— L 1)~ %H (o
s [ ]
s [ ]
_1m—1(t
qr-1,m1(t) ° wy_1 (1) o R

N B 7 2N G T o

(@) (b)

Fig. 4: An efficient sampling system for multipulse signadg, (and an equivalent system using filters (b). The

sampling step is = WK.

where
Lo
wj(t) — Z djlefbriblti7
l=—Lg
Ko
Sm (t) = Z kag(t - CLIC) ) (8)
k=—Kjo
with
[+ _[@+B)W
KO_’V2WN-‘ 1 and Lo—’V 5 1. (9)

Let K = 2Ko+1andL = 2Lo+1. The waveforms; ,,,(¢) are basically mixtures ok L channels:—2""!g(t — ak),
k = —Ky,...,Ko andl = —Ly,..., Ly, of the Gabor sampling scheme, where the function§) mix the
frequency content of the signal, whitg, () mix the temporal content of the signal. To spedcjfy,, (t) completely,
it remains to choose the coefficients andc,,, defining the waveformsv;(¢) ands,,(t), respectively. To do so,
we first analyze the relation between the samplgs and the signalf (¢).
Consider thgj, m)th channel:
B/2
v = [ Hsad

—B/2
Ko

Lo
= > di > cow(f, MyTurg)

l=—0Lg k=—Kjo

Lo Ko
= > di > Cokzra- (10)

l:—Lo kZ:—K()
The relation[(ID) ties the knows,, ; to the unknown Gabor coefficients ; of f(¢) with respect taG (g, a,b). This

relation is key to the recovery of(¢). If we can recover;; from the sampleg; .., then by Theoreri 1IlI1 we
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are able to recovef(t) almost perfectly. As can be seen from](10), the goal of theutatdr ¢, ,,,(¢) is to create
mixtures of the unknown Gabor coefficients;. These mixtures, when chosen appropriately, will alloweocover
z,; from a small numbey M of samples by exploiting their sparsity and relying on ide&€S. Note, that when
using the basic Gabor scheme, eagh, is equal to one value ofy ;, so that no combinations are obtained. When
z, are sparse, with unknown sparsity locations, we will needdquire all their values using this approach. In

contrast, obtaining mixtures af, ;, allows reduction in the number of samples.

B. Signal Recovery

For our purposes, it is convenient to writeJ(10) in matrixnfoas
Y =DX?, with X=CZ. (11)

Let the indicesk = — Ky, ..., Ko, l=—Lg,..., Lo, m=0,....,M —1andj =0,...,J — 1 be fixed throughout
the exposition. ThenY is a matrix of sizeJ x M whosejmth element equalg; ,,, andX is a matrix of size
M x L with mith element equat,, ;. The unknown Gabor coefficients are gathered inAhe L matrix Z with
columnsZ[l] = [z_ry1s-- -, 2K,.)T- The M x K matrix C contains the coefficient€,, x+ x, = cmk, While the

J x L matrix D contains the coefficient®; ;. r, = dj;. The matriceaC andD have to be chosen such that it is
possible to retrieve from (11). If J = L, M = K andD, C are identity matrices, then the system of FiY. 4(a)
reduces to standard Gabor sampling.

From [10) it follows that the waveforms,, (t), respectively matrixC, mix the temporal content of the signal,
while the waveformsu;(t), respectively matriXD, mix the frequency content of the signal. The ma@xs used
to reduce the number of channels. On the other hand, the gairpidD depends on which kind of signals are
sampled. For general multipulse signals, the mabixs only used to simplify hardware implementation, as we
discuss below, but not to reduce sampling rate. Thereforgeneral, we can chood® = I in this case. For
multipulse signals that are additionally frequency spavee needD to allow recovery from lower rate samples,
namely we can reduce the sampling rate by using appropriatines with J < L, as shown in SectionlV.

We begin the discussion with general multipulse signalselVthere is no frequency sparsity, we can choose
J = L andD = I, reducing[(ID) taX = CZ. In this casew,(t) become pure modulationrs 27**/~L0) Choosing
J > L andD left invertible leads to a mixture of pure modulations, whaan be easier to implement in hardware.
This point is discussed in more detail in Secfion] VII. AssngD has full column rank, we can recov&r from the
samplesY by X = (D'Y)T, whereD' = (D”D)~!'D¥ is the (Moore-Penrose) pseudoinversdfit remains
to retrieve the unknown Gabor coefficients; from X = CZ.

Recall from Fig[3, that for every, the column vector&[l] of matrix Z have only[2;~1]N out of K nonzero
entries, where the nonzero entries correspond to the peds#idns. In addition, a[l] have nonzero entries in the
same rows. The problem of recovering such a maris referred to in the CS literature as a multiple measurement
vector (MMV) problem. Several algorithms have been devetbihat exploit this structure to recovérefficiently

from X in polynomial time whenC has the RIP property of ord@f2,~1]N, twice the number of nonzero rows
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supp so(t) supp s1(t + WK) supp sar—1(t + (M - 1)WK)
-

supp f |

i |
: [ ] L[] L] : |
: : | :

| (M)WK t

|
T } T t t
-g/2 0 8/2 | WK

Fig. 5: Relation between the support of the filt€t), which is the sum of the shifted supports ©f (¢), and the
support of the signaf(t).

[12], [13], [14], [286], [271], [28]. For example, a popular @ach is by solving the convex problem
min|[Z||2,; subjectto X = CZ, (12)

where||Zl|2,1 = Y50 (070 gl )2,

It is well known that Gaussian and Bernoulli random matriegsose entries are drawn independently with equal
probability, have the RIP of orde$ if M > ¢Slog(K/S), wherec is a constant [29],[[30]. For random partial
Fourier matrices the respective conditionfi§ > ¢Slog*(K) [31], [32]. Therefore in our case, the number of

samples in time has to be at ledst > 2[2u~ Y] N log(K/(2[21~1]N)).

C. Equivalent Representation

For a fixed Gabor framé€(g, a,b), the number of branches can be reduced ti instead of JA/ modulations
followed by an integrator, we performi modulations followed by a filtes(¢). Consider the system in Figl 4(b)
with w;(t) as in [8),7 = WK, whereK = 2K, + 1, and K, is as in [9), and the filtes(¢) given by

M-1
s(t) = Z Sm(t+WKm).

m=0
Note, that for allm, s,,(t) is compactly supported in time dpW/2 — W Ko, W/2+ uW K], and that its support
contains the suppoft-3/2, 3/2] of f(t). The shifted versions,, (¢t + W Km) have non-overlapping supports as
the width of supp,, is smaller than the shift stepy/ K

W(1 4 2uKo) < W(1+2K,) = WK .

The support relation between the filteft) and the multipulse signaf(¢) is depicted in Figl.

Under these assumptions, the output of e channel is

Yjm = (w;(8)f(t) * s(=1))[WKm]
1

M— Lo
- Z Z dj(M—vif, Tw K (m—n)Sn) -
n=0 [=—Lg

The sum is nonzero only when — n = 0, because otherwise the supportsqf(t) shifted by W K (m — n) does

not overlap the support of(¢), as depicted in Fid.]5. Therefore it is sufficient to samplly @b pointst = W Km
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form=0,...,M — 1, leading to

L() LO
Yim = > dp(M_pf,5m) = dul(f, My5m)
I=—Lo I=—Lo

Lo Ko
= E dji E CmkZk,l

l:—L() kZ:—Ko
wherez,; = (f, My T,1 g) are the Gabor coefficients. Evidently, if the coefficients, used to build the blocks
sm/(t) of the filter s(¢) are the same as coefficients used to create the waveigrmng), then the two systems are

equivalent.

D. Noisy Measurements

Until now we considered signals that were exactly multipudsid noise free samples. A more realistic situation
is when the measurements are noisy and/or the sififtalis not exactly multipulse, having some energy leaking
outside the pulses. We now show that our sampling schemebisstdo bounded noise in both the signal and the
samples.

We say that a signaf(¢) essentially bandlimited t¢—2/2, /2], is essentially multipulse wittv' pulses each
of width no more thari¥, if for somedy < 1 there exists arf, € MP(N, W, 3,Q) such that

ILf = follz2 < owllfll2-

We assume that the signals are time limited to the intdrvgl/2, 3/2], meaning that the energy leaks only between
the pulses, and denote this class of signals\MiP...(N, W, 5, Q).
Since the energy of € MP..(N,W,3,Q) leaks beyond the support of the pulses, the column ve&fis
of the K x L matrix Z of dominant coefficients, defined ih{11), are no longer smaxonethelesZ can be well
approximated by a sparse mat@¢, which consists ofS = [2;~1]N rows of Z with largest/, norm, and zeros
otherwise, and is referred to as the béstterm approximation o. The existence oZ® is shown in AppendikB.
Assuming now that the sampling system of Hi§j. 4(a) also hamifections in the form of noise added to the

samples, the input-output relation can be written as
Y =DX"+N (13)

whereX = CZ with Z a K x L matrix of Gabor coefficients an¥l is an.J x M noise matrix. WithD having
full column rank, the relatiod (13) reduces¥ = CZ + N, whereN = D'N. A good S—term approximation of
Z can be obtained by utilizing CS algorithms. SpecificallyCifhas RIP constant,s < /2 —1 andN is bounded,
then

min ||Z||2,1  subjectto ||CZ — X2 < ||NJ|2 (14)

has a uniques —sparse solutiorZ that obeys|[28]

|Z — Z||2 < C1||Z — Z5|/2,1 + C2||N|J2,
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where(C; andCy are constants depending 6s).
Finally, following a proof similar to that of Theoreln 11l.1 ¢an be shown that a function synthesized fréns

a good approximation of the original signg(t):

Ko Lo
- zMI’H<
Hj’ S0 EuMyTay LS
k=—Kol=—Lg

< Coleg + €a)||fll2 + C1l|Z — Z5||2,1 + Co||N||2

Ysollgllse: C1 = CaplVllsoCri C2 = Canllylls,C2 andN = DIN.
In particular, if Z is row sparse, as is the case fore MP(N,W,3,Q), thenZ = Z° and the error of the

whereCy = C7 |

approximation depends only on the noise added to the samlesn the signal is essentially multipulse, then the
error bound depends on the decay of the coefficients. If thahiity is small, then a good approximation fft)
is achieved by synthesizing a signal from the solutibrof (I4). Note here, that the if the dual windowt) is

compactly supported, then a function reconstructed froenctrefficientsZ is multipulse.

V. TIME-FREQUENCY SPARSE SIGNALS

We now show that we can further reduce the sampling rate wédmapling multipulse essentially multiband signals.

We begin by giving a formal definition of such signals and diégcthe structure of their Gabor coefficients.

A. Multipulse Essentially Multiband Signals

We say that a signaf € MP(N, W, 3,Q) is essentially multiband witty bands of width no more thaflyy,

if for someey, < 1 there exists a multiband functigfy with .S bands, all of width no more thefly;, such that

1= foll2 < ewllf]l2-

We denote the set of such signalsdyP(N, W, 8, S, Qw, ). An example are radar signals that are superpositions
of a finite number of time-shifts and modulations of one pulthe generating pulse is well localized in frequency,
then the signal is approximately sparse in the Gabor tramsttbomain with respect to a window that decays fast
in time and frequency.

Let the Gabor frame be as in Sectionl IV. If the signal is knoarbé essentially multiband, then the nonzero
row vectorsZ(k| = [zk,— Ly, - - -, 2k,L,] have only[(Qw + B)WS out of L dominant entries, and the dominant
entries correspond to the locations of the essential bahdgto. Indeed, let[B;, B;] be any frequency band of
f(t). ThenB; — By < Qu and there are at mos{Qy + B)W shifts of essential bandwidth-B/2, B/2] of
g(w) by bl that overlap| By, Bs2]. This can be calculated from

B<_§+£
PRTETW L Ly > (Qw + B)W.
B> 5+

The coefficients for which the shift by of g(¢) does not overlap any frequency bandfdf) are nonzero but small.

Since there are altogeth&r bands present, eadlik] is [(Qw + B)W]S—dominant and allZ[k] have dominant
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entries on the same columns due to the structurg(of This implies thaZ has at mosf(Qy + B)W'.S dominant
columns, as shown in Fif] 3.

The K x L matrix Zp with P = [(Qw + B)WS nonzero columns corresponding to tRedominant columns
of Z is referred to as the be&t—column approximation oZ. Consequently, a result similar to that of LemmalB.1
holds with time and frequency interchanged. The sparsitynie combined with the sparsity of(¢) in frequency

allows to further reduce the number of samples necessarg fmod reconstruction.

B. Signal Recovery

To recoverZ from the measurements in Figl 4(a), the matri€esand D have to be chosen appropriately. If
J > L andD is left invertible, then we are back to the situation of SatliVl However, sinceZ is additionally
almost sparse with respect to columns, we would like to redlc

It is convenient to write the relatiof (111) as
Y” =CU, where U=2ZD".

The matrix U inherits sparsity with respect to rows from the matdéx and therefore has onlj2; =N out of
K nonzero rows, which are precisely the nonzero row& ofVhen the matrixC has the RIP property of order
271N, then U can be efficiently recovered, for example by solvifigl (12) dounique solutionU subject to
YT = CU.

Next, we useU to find a unique[(Qy + B)W]S—sparse approximation df. Let S be the set of indices of
nonzero rows olU andU¢ the matrix built from those rows dff indexed bysS. If the matrixD has RIP constant
Sop < V2 —1 with P = [(Qw + B)WS, then there exists a uniqué—sparse solutioV' of

min|[Vll2,1  subject to (US)T =DV.

Let Z be aK x L matrix whose[2,~ 11N rows indexed byS equal toV7, and the remaining entries equal to

zero. It then follows that is proportional to the besP—column approximation o¥ in the following sense [28]
1Z = Z> < C1|(Z = Zp) ||z,

where(; is a constant depending @ap. The requirement oD translates toJ > 2[(Qw + B)WS. As opposed
to purely multipulse signals, where it suffices to tdRe= I, this choice is not possible here, since it does not
satisfy RIP.

The resulting matrixZ is a 21N row sparse and(€ + B)IW]S column sparse approximation @. It
is important to note, that the solution to the first MMV prableY” = CU, recoversU exactly, sinceU is row
sparse, while the solution to the second MMV probldif, = DZ”, returns a column sparse matéthat is an

approximation ofZ, which itself is not strictly column sparse.
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Finally, the function reconstructed from the coefficieBitg is a good approximation of the input signa(t):

Ko Lo
Hf— Z Z 5k.,lelTak’YH2 <
h=—Ko l=— Lo

< Colen +€)llfll2 + CLl(Z — Zp)" |21

whereC, = C2Zul1lls0llglls, and C1 = Caull7]ls,C1. The proof is analogous to the proof of the error estimate in
Theoren(1ll.1 with appropriate adjustments.

In the case of known positions of the pulses and bands, themairsampling rate for the desired accuracy of
the approximation and a given frame is whieh= [2,~1|N andJ = [(Qw + B)W]S. In the blind setting, when
the locations of the pulses and the bands are unknown, thplisgnnate increases by a factor of four (a factor of
two in each domain), with\/ > 2[2,~'1N andJ > 2[(Qw + B)WS required for obtaining a unique solution.
Therefore, for signals from the sauP(N, W, 3, S, Qw, ), the number of sample®/ with respect to time is the
same as for signals fro’MIP(N, W, 8, ), while J, the number of samples with respect to frequency, is reduced

from J > L to J < L. The overall number of samples i J ~ 80, WNSu~!, whereQj;, = Qu + B.

VI. RELATED WORK

Recently, the ideas of CS have been extended to allow foNsujuist sampling of analog signals [6]J [8]. [9],[17],
[18], [28], [33], [34]. These works follow the Xampling patigm, which provides a framework for incorporating
and exploiting structure in analog signals without the needliscritization [15], [16]. Two of these sub-Nyquist
solutions are closely related to our scheme: the first is aNsuduist sampling architecture for multiband signals
introduced in[[17], while the second is a sampling systemmiattipulse signals with known pulse shape introduced
in [8]. We show, that by choosing different waveforigis,, (t), the systems of [17] and[8] are special cases of the

system in Fig[}.

A. The Modulated Wideband Converter

The concept of using modulation waveforms is based on idezsepted in[[17] for a multiband model, which
is Fourier dual to ours: the signals in_[17] are assumed topagse in frequency, while multipulse signals are
sparse in time. More specifically, [17] considers multibaighals whose Fourier transform is concentrated\on
frequency bands, and the width of each band is no greater Fhahhe locations of the bands are unknown in
advance. A low rate sampling scheme, called the modulatddhaind converter (MWC), allowing recovery of such
signals at the rate of N B was proposed in_[17]; a hardware prototype appears in [16 $cheme consists of
parallel channels where in each channel the input is moetlilaith a periodic waveform followed by a low-pass
filter and low-rate uniform sampling. The main idea is thaeath channel the spectrum of the signal is scrambled,
such that a portion of the energy of all bands appears at badefiherefore, the input to the sampler contains a
mixture of all the bands. Mixing of the frequency bandslin][ks7analogous to mixing the Gabor coefficients in

our scheme.
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The MWC is equivalent to the system of FId. 4(b) where the i@ves w,(t) are B—periodic and the filter
s(—t) is an ideal rectangular low pass filter, whose bandwidth-i8/2, B/2]. The samples are taken at points
t =m/B, m € Z. The output of the MWC system is then a weighted sum of Gabefficents with respect to
a framegG(g,, a, b) whereg,.(t) is a sinc function that is bandlimited fe-B/2, B/2] anda = 1/B, b = B. Thus

the samples can be written as

Lo
Yjim = § djmzm.,l )
l=—Lg

whereLy = [(2+ B)/(2B)] — 1. With this frame, for eachn € Z the number of nonzero Gabor coefficients,
equals at mos2B, as at most two shifts of—B/2, B/2] by bl = Bl overlap one band of the signal. Therefore,
the number of channel$ is proportional to the numbe¥ of frequency bands in the signal, and equals 4N B.

The MWC is an ideal system, in the sense that it uses ideal &ss fiilters, which in practice are difficult to
build, and that the reconstruction process uses infinitegyrsamples. Using the Gabor approach we can generalize
the MWC to other, not necessarily ideal filters. Furthermdine reconstruction error can be computed when only
a finite number of samples is available by using Thedrem] With time and frequency interchanged.

The MWC can be easily extended to other, more redundant 8awith a cost of increased number of channels
J. Let G(g,a,b) be a collection of Gabor frames with windows$t) bandlimited to[—B/2, B/2] and constants
a =1/B andb = uB, for someu € (0,1). For any frame fromG(g,a,b), the MWC parameters change to
Ly = [(Q+ B)/(2Bu)] — 1, the waveformaw,(¢t) have to beBu—periodic and the filtes(t) = g(¢). Also, the
sparsity of Gabor coefficients in frequency reduces2o—11N, as [2u~1] shifts of [-B/2, B/2] by bl = Bpul
overlap one band of (). The MWC system associated to this frame has to have2[2u~ '] NBu~! channels.
This is an increase in the number of channels by a factqrdf However, this increase can reduce the number

of time samples necessary for achieving the same recotistiuror as withG(g., 1/B, B).

B. Multipulse Signals with Known Pulse Shape

Another related signal model is that of multipulse signaithwnown pulse shape5![6].1[8].][9]:

S
Ft) = ouh(t —t,) (15)

whereh(t) is known andf (t) is supported on—3/2, 3/2]. This problem reduces to finding the amplitudesand
time delayst;. As shown in[[6] the time-delays can be estimated using neali techniques e.g. the annihilating
filter method as long as the number of measureménsstisfiesL > 2S5 and the time-delays are distinct. Once
the time delays are known, the amplitudes can be found viast Eguares approach. The number of channels is
motivated by the number of unknown parameters, ¢;) which equal2S.

The Fourier coefficients can be determined from the samgdlgg# using a scheme similar to that of Fig. 4(a)
with J > L channels. The/ modulating waveforms being; ,,,(t) = w;(t) with b = 1/3, and alls,, () set to one.
In this case, the input-output relation becomes

y =Df,
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~

wherey is a vector of lengthJ, D is a matrix of sizeJ x L andf is a vector of Fourier coefficients(i/5) of

f(t) of length L. If w;(t) are designed so th@ is left invertible, thenf = Dfy. We note here, that the system of
[8] is inefficient for our signal model, since it reduces t@ thourier series method, which does not take sparsity
in time into account. However, by choosing an appropriatbdedrame and waveforms; ,,,(t), the same scheme
of Fig.[4(a) can be used both to sample signals from the\d&(N, W, 5,Q) as well as that of the forni.(15), as

shown in the following proposition.

Proposition VI.1. Let G(g,a,b) be a Gabor frame such that’, , g(t — ak) = 1 almost everywhere, and the
waveformsy; . (¢) in the sampling scheme of F{g. 4(a) are such that the mdirjxs left invertible and the matrix

C has RIP constani < v/2 —1 of order2[2x~']N with one row of ones. Then this sampling scheme can be used
to sample multipulse signals of the form1(15) supported-efi/2, 3/2]. The time-delays and amplitudes fft)

can be retrieved frony samples as long as € [-W/2,W/2], L > 25 and the known puls&(t) in (I8) satisfies
Rh(bl) # 0 for |¢] < L.

The proof is straightforward.

Example of Gabor windows(t) that are well localized in time and frequency and form a partiof unity, e.g.
> rez 9(t —ak) = 1, are the raised cosine window, or B-splines of positive rq23]. An example of a matrix
C with a row of ones is a partial Fourier matrix which is knowm fts good CS properties [21].

To conclude, we have seen that the same hardware can be usachpie signals with known pulses and those

from MP(N,W, 3,Q). The difference is in the number of branches used and theepsoty stage.

VIlI. WAVEFORM DESIGN

Hardware implementation of our scheme reduces to implengettie waveforms; ., (¢). The mixing functions
¢;m(t) are a product ofw;(t) and s,,(t) defined in [(8). The functions,,(t) are pulse sequence modulations,
where the sequences are generated to form a valid CS matrigxAmple is a matrix whose entries aré& drawn
independently and with equal probability.

One method to create the waveformg(¢) is to low-pass filterl /b—periodic waveforms. More precisely, let

— il
i) =YY aylilp (t— 5 — 5
; bl b
l€Z =0
wherep(t) is some pulse shape such thafbl) # 0 for |¢| < Lo, ande;[i] is a length-I sequence. Sincé;(t)

is 1/b periodic it can be expressed as

wj (t) _ Z gjjle—Qﬂ'iblt ’

lez
for some coefficients@l. We then filterw, (¢) by a filter u(¢) with frequency responsg(w), designed so that
1 w=0bl, || <L
uw)=4¢ 0 w=bl, |l|>Ly

arbitrary elsewhere
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to form the waveformsu;(t) = ZZL:“_LO djie2™ with coefficientsd;; = le -u(bl). The shaping filter frequency
responsei(w), is designed to transfer only the coefficients with index — Ly, ..., Ly, suppressing all other
coefficients.

For the matrixD, built from the coefficientsi;;, to be left invertible a necessary condition is thiat [ > L
and the sequences;[i] are chosen such that the matdx whosejith element isa;[i], has full column rank[8].
For example, ifJ = I = L, then the rows ofA can be created from cyclic shifts of one basic sequence. &n th
other hand, for a matriD to be a valid CS matrix, meaning to have RIP property with tpgbbability, the values
a;[i] = £1 are chosen independently with equal probability dne L > J [17].

One example of a pulse modulation scheme is wlieal = L, and

]
]

wit) = 1 te[O?
0 t¢ 0,4

The frequency response of this pulse is given by

D(w) = —e 3 - smc(w)

= e bl

so thatw(bl) # 0 for |¢| < Lo. In addition we choose;[i] as sequences afls, created from cyclic shifts of one
basic sequence, in a way that yields an invertible maixSuch rectangular pulses with alternating signs can be

easily implemented in hardware [16].

VI1Il. GABOR WINDOWS

The sampling scheme presented in this paper is based on Gainas. We recall here some methods to construct
Gabor frames with well localized windows for a chosen redunuy « based on results from [22] and [23].
Let 1 > 3. A window g(t) that is supported ofi-W/2, W/2] and forms a frame witly = W andb = 1/W

can be constructed from an everywhere increasing funétioh such thath(t) = 0 for ¢ < 0, andh(t) = 1 for

t>1hy
0, t< -4,
1/2

t/W+12 A

(L)) e [H -1,
g(t) =19 1, t] < 22,
1/2

t/W—=X\/2 WX W
[1 h(/ /)} , te Y2 5]
0, t>Y,

wherel = 2p—1, [22]. The functiory(t) is non-negative, has the desired support and equats — W /2, W\/2].

If h(t) is taken to bek continuously differentiable, thag(t) is k& times continuously differentiable, which implies
that g(w) decays likeo(|w|~*). The pointst = £W /2, whereg(t) becomes constant, have been chosen so that
their distance to the furthest edge of sypis exactly V. The frame bounds of such a constructed frame equal
Ay = Ay =1 [22], since

> lg(t+ kpw)|? =
keZ
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As an example, leb(t) = sin(rt/2) on [0,1] andp = 1. Then

0 [t] > W/2,
cos(mt/W) |t| < W/2.

g(t) =

An alternative construction for > 1/2 was developed ir_[35][ [36]. The method results in splineetypindows
g(t) of any order of smoothness that satisfy the partition ofyuaitterion. The constructions are made by counting
the number of constraints (in the Ron-Shen duality condif8Y], and on the points where continuity/differentiatlyili
is required) and then searching for polynomials[efi, 0] and on[0, 1] of a matching degree. One examplgj(s)

supported orj—2/3,2/3] and given by

243t te[-2/3,-1/3],
gty =4 1 t] <1/3,
2-3t tell/3,2/3],
that forms a frame witlu = 1 andb = 3/4. It forms a partition of unity with a shift parameter=1, >, _, g(t —

k) = 1. The dual window is also supported ¢n2/3,2/3] and is given by

—18t2 — 15t —2 t€[-2/3,—-1/3],
() =9 1 lt} <1/3,

—18t2 + 15t —2 t € [1/3,2/3].
Applying dilation by (W)=, with 1 = 3/4, both tog(¢t) and~(¢) we obtain a dual pair of windowg(t) and
Y(t)

g(t) =g(t/(uW))  ~({t) =5(t/(uW))

that are supported op-W/2, W/2], and such that(g, uW,1/W) forms a frame with frame bound4; = 1/2

and A, = 1. Moreover,g(t) forms a partition of unity with shift parameter= pW, >, ., g(t — pWk) = 1.

Well known, compactly supported Gabor windows are the Baspl LetBx(¢) be a spline of ordelV,

Bi(t) = x1/2(t), Bn+1(t) = (Bn * B1)(1).

Then By (t) is supported of—N/2, N/2] and forms a partition of unity with shift parameter= 1. To generate
a Gabor frame fronByy (¢) with a window supported of-1W/2, /2] and lattice parameters= W, b = 1/W,
such that the window forms a partition of unity with shift’’, we need to choosg = 1/N [38]. Theng(t) =
By (tN/W) is supported on the desired interval and decays(like |w|) =" ~< in the frequency domain. Note that
1 decreases as the ordAr of smoothness of the B-spline is increased. Thus smoothsdomis can be obtained
only at the cost of a smalles. However, already fotV = 3 we get good concentration properties gif). The

dual can be computed by inverting the Gabor frame operatdsy aising the method of [23].

IX. SIMULATIONS

We now present some numerical experiments illustrating¢écevery of multipulse signals.
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Fig. 6: (a) Decay of the reconstruction error with increasechber of samples for multipulse signals with= 1, 3,5
pulses, pulse widti = 0.18ms and frame redundangy= 0.5. (b) Comparison of performance for signals with
N = 3, W = 0.24ms using different frames withh, = 0.3, © = 0.5 and u = 0.75. (¢c) Comparison of the
relative error with respect to the number of channkif®or multipulse essentially bandlimited signals with = 3,

W = 0.18ms, S = 2 with respect to different frames.

We tested our sampling scheme using Monte Carlo simuladwesaged oves00 trials on a range of multipulse
signals of duratior8 = 22ms. The pulses making up the signals were chosen at randomafrget of five different
pulses: cosine, Gaussian, B-spline of orleand 5, and rectangular pulse. The locations of the pulses were als
chosen at random. We varied the number of puldes= 1, 3,5, the maximal widthiW = 0.18,0.24ms of the
pulse, and the redundangy= 0.3,0.5,0.75 of the frame. Throughout the experiments we chbse- I andC as
a Bernoulli random matrix. We measured the relative efrpr f|/||f||2. For redundancy: = 0.3 we chose a
Gabor frame with window being B-spline of order three, foe= 0.5 the window was a cosine, and far= 0.75
we chose the truncated Gaussian.

Fig.[8(a) depicts the decrease in the reconstruction eritbrincreased number of samplés for different values
of N andW = 0.18ms. We used a tight Gabor frame with a cosine window and reaheyd: = 0.5. The M is
dictated by the the number of pulses and frame redundandyjf dras to be at leat[2,~1]N. Meaning, that for
multipulse signals withV = 1 pulses,M > 8, for N = 3 we haveM > 24, and for N =5 it has to beM > 40.
As expected, the sparser the signal, the less samples atechfze a good reconstruction. The number of samples
in time can be significantly reduced if sparsity is taken iat@ount. Without any knowledge on the sparsity we
would have to take< = 241 time samples for signals withV = 5 pulses, and withl,, = 5 that would result in
the reconstruction error d@f.05. However, when sparsity is taken into account, alreafly= 40 samples suffice to
achieve the same reconstruction error. Therefore redubmgumber of samples by a factor of six. Wh¥n= 3,
to achieve reconstruction error 6f05 we needM = 28 samples in time, and/ = 12 for signals withNV = 1.

In Fig. [@(b) we considered the influence of the Gabor frame henreconstruction error and the number of

samplesM involved. We tested the system for signals with= 3 pulses of width no more thaw = 0.24ms and
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Lo = 5. The least number of samplds = 121 is achieved withy, = 0.75 and at the same time with/ = 25 we
achieve a good reconstruction. The valueléfnecessary for a good reconstruction increases with theaser of
redundancy. Without knowing the sparsity structure of tigaa in time, we would have to tak& = 271 samples
for p = 0.3, and K = 120 for p = 0.5. When sparsity is exploited, we can reduce that numbev/te= 45 and
M = 27, respectively.

We then examined the performance of our sampling schemegmalsi comprising three pulses of width no
more thanl¥ = 0.18ms, that are additionally essentially multiband with twantds. Fig[6(c) depicts the decay of
reconstruction error with the increase bffor two different frames: one is a tight frame with cosine dow and
redundancy: = 0.5 and second, a frame with Gaussian window and redundaney).75. The sampling system
was tested with the matrild being the random Fourier matrix and a Bernoulli random matrix. For example,
when a frame is of redundangy= 0.5 and no sparsity is taken into account then we n&ee 241 and L = 91
samples to achieve a reconstruction erroi0df7. On the other hand, with sparsity being exploited we can use
only M = 35 andJ = 40 for a similar reconstruction quality, resulting in a twdlvlel reduction in the number of

samples.

X. CONCLUSIONS

We presented an efficient sampling scheme for multipulseassg which is designed independently of the time
support of the input signal. Our system allows to sample ipulke signals at the minimal rate, far below Nyquist,
without any knowledge of the pulse shapes or its locatioh& 3cheme fits into the broad context of Xampling -
a recent sub-Nyquist sampling paradigm for analog sigtis.architecture relies on Gabor frames which lead to
sparse expansions of multipulse signals, and consists diifating the signal with several waveforms followed by
integration. We showed that the Gabor coefficients, necg$sareconstruction, can be recovered from the samples
of the system by utilizing CS techniques. The number of resrgssamples depends on the desired accuracy of the
approximation, essential bandwidth of the signal, and medacy factor. related to the Gabor frame, and equals
4Q'NW 1. The sampling rate can be further reduced if the signal istiaddlly sparse in frequency. We also

showed that the proposed sampling and recovery technigsialide with respect to noise and mismodeling.

APPENDIXA

ProoOF oFTHEOREM[IT.T]

The proof is rooted in that of Theorem 3.6.15 [in][24] with agmiate adjustments. Sing#g, a, b) is a Gabor

frame, f(t) admits a decomposition

Ko
f= Z sz,szzTak”y-
k

=—Ko l€Z

Let eg > 0. The bandlimitedS, functions are dense ifiy, therefore, there exisig. € Sy bandlimited to some
[-B/2, B/2], such that

lg = gellse < emliglls, -
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Since f(t) is an essentially bandlimited function, there exists a fiomcf.(¢) bandlimited to[—/2,Q/2], such
that
If = fellz < eallfl2-

Consequently|zy, ;| = |<ﬁ, M_ 1. Toige)| # 0 only for thosel such that supp. N (suppge + bl) # 0, that is
[—Q/2,9/2)N[bl — B/2,bl+ B/2] £ 0.

The fact thatf.(¢) and g.(t) are bandlimited implies that there are only a finite numbewalties¢ for which
Vg, fe(ak,bl) # 0. Let Ly be the smallest integer such thad, f.(ak,bl)| = 0 for |I| > Lo. The exact value oL

Q+ B
b= [257] 1

can be calculated as

Define a sequencé,; as
2kl |k| S KOa |l| > LO
dp, =
0, else.

Then|dy,| < |Vy—gq. f(ak,bl) + V, (f — f)(ak,bl)| for all k,I € Z, and

Ko

Lo
Hf—kz Z Zk,szlTak’YH2 =

=—Kol=—Lg

= H szk,lel Tak WHQ < Capl

kEZ €L

< CaplVllse (Vg—ge flles + Ve (f = f)lles)

< Coullllsollgllse (€5 + )l fl2

7|‘SO||dHé2

where we first used the boundedness of the analysis opeeddted tog(t) and then the synthesis operator related

to v(t) wheneverg and~ are in Sp.

APPENDIXB

S—TERM APPROXIMATION OFZ

We show here the existence of &h-term approximation of.

Lemma B.1. Let f € MP..(N, W, 3,Q) be dy —essentially multipulse and(g, a,b) be a Gabor frame withy
compactly supported op-W/2,W/2] anda = pW, b = 1/W for some0 < u < 1. Then there exists a subs8t
of {—Kj,..., Ko} such that

1Z = 22,1 < 6w VECapllglsoll fz,

whereZS consists of rows o indexed byS, K = 2Ky + 1 and [|Z]|21 = 30>, (01 2zl ?) 2.

Proof: Let f, €¢ MP(N,W,3,Q) be a multipulseyy —approximation off. ThenV, f,(ak,bl) = 0 for all
|k| > Ko, and the column vector§/, f,(—aKo,bl), ..., V, fp(aKo,bl)]|T, |I| < Lo, are all jointly sparse with
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[2u~11N nonzero coefficients. Le§ denote the index set of nonzero coefficients. For< Lo, let ZS[l] be

vectors with coefficients;; defined by

2k, keS
0 k¢S,

S _
Rl =

ThenZ5[l] is the bes{2,.~'] N —term approximation of|l], for each/. Note thatiz; ; — 25 | < [V, (f — f,)(ak, bl)]

for all K and/, so that

Ko Lo 1/2
|1z — ZSH2-,1 — Z Z |2t — Z]i”z
k=—Ko \l=—Lo
Ko Lo 1/2
< 30 Vs — fo)(ak. bl
k=—Ko \l=—Log

Ko
< D IWVelf = f)ak, e < VEIVy(f = fp)lles

k=—K,

< VECaplgllsollf = fyllz < dwVECapllglis, | fll2

completing the proof. ]
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