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ABSTRACT

This paper combines a parameter generation algorithm and a model
optimization approach with the model-integration-based voice con-
version (MIVC). We have proposed probabilistic integration of a
joint density model and a speaker model to mitigate a requirement of
the parallel corpus in voice conversion (VC) based on Gaussian Mix-
ture Model (GMM). As well as the other VC methods, MIVC also
suffers from the problems; the degradation of the perceptual quality
caused by the discontinuity through the parameter trajectory, and the
dif culty to optimize the model structure. To solve the problems,
this paper proposes a parameter generation algorithm constrained
by dynamic features for the rst problem and an information cri-
terion including mutual in uences between the joint density model
and the speaker model for the second problem. Experimental results
show that the rst approach improved the performance of VC and
the second approach appropriately predicted the optimal number of
mixtures of the speaker model for our MIVC.

Index Terms— Voice conversion, probabilistic integration, dy-
namic features, information criterion

1. INTRODUCTION

Voice conversion (VC) is a technique to transform an inputted ut-
terance of a speaker to another utterance that sounds like another
speaker’s voice without changing the linguistic content. VC can be
regarded as a technique to modify inputted features to features of a
desired target. Then VC techniques have potentials of applying to
many research areas of speech processing besides speech synthesis
or speech generation [1, 2].

To derive appropriate features of a target speaker from a source
speaker’s features by VC techniques, two important functions should
be considered; to model the proper correspondence of the source fea-
tures to the target features, and to represent a feature space of the tar-
get precisely. Although there have been several proposed techniques
for voice conversion based on statistical approaches [1, 3, 4], they
strongly focus on the rst function. To realize this function, they re-
quire the parallel corpus for training, which contains plenty of utter-
ances with the same linguistic content both the source and the target.
On the other hand, we have proposed the model-integration-based
voice conversion (MIVC) which focuses not only on the rst func-
tion, but also on the second function, i.e., to model the precise feature
space of the target speaker [5]. Our method uses non-parallel speech
data of the target speaker to construct the speaker model of the tar-
get. Then it effectively mitigates the data sparse problem caused by
the requirement of the parallel corpus. There are other approaches
focusing on the ef cient use of non-parallel data [6, 7]. They have

applied parameter adaptation techniques to parameters of the joint
density model, which is constructed to model the relation between
the source and the target speakers. On the other hand, our proposed
approach independently constructs the speaker model of the target,
and integrates it with the joint density model by a probabilistic man-
ner. Therefore it works well even if the amount of training data for
the joint density model is small.

In this paper, we try other two problems in voice conversion
studies; the degradation of the perceptual quality of the converted
speech caused by the discontinuity through the parameter trajec-
tory, and the dif culty to optimize the model structure of conversion
models. The rst problem is mainly caused by the frame-by-frame
mapping where the correlation of the target feature vectors between
frames is not considered. Our MIVC also suffers from this problem.
In addition, since parameters in the target speaker model in MIVC
are independent of a feature sequence of the source speaker, inappro-
priate spectral movement can occur more often than the conventional
VC methods even if each frame in the converted features is modeled
more precisely.

The second problem, the determination of an optimal model
structure, is one of the most dif cult problems in statistical acous-
tic modeling. For example, in the conventional GMM-based voice
conversion, if the number of Gaussian components is increased un-
necessarily, it causes the degradation of the performance of the con-
version for test sentences. It is well-known as the over-training ef-
fect. In our case of MIVC, optimization of model structure is more
dif cult because mutual in uences between the joint density model
and the speaker model should be considered.

For the above problems, there have been several proposed ap-
proaches in various areas; lter-based approach [8], maximum like-
lihood estimation of the parameter trajectory [9, 10] for the rst
problem, and acoustic modeling based on the MDL criterion [11]
or variational Bayesian treatment [12] for the second one. Consider-
ing them, in this paper, we employ two approaches in our method; a
parameter generation algorithm using dynamic features for the rst
problem and a model optimization based on an information criterion
including mutual in uences between both the models for the second
one. Experimental results show that the rst approach improved the
performance of VC and the second one appropriately predicted the
optimal number of components of the speaker model for our MIVC.

2. MODEL-INTEGRATION-BASED VOICE CONVERSION

This section brie y describes the joint density GMM method [1]
and our model-integration-based voice conversion (MIVC) [5]. Let
X = [x1, x2, . . . , xnx ] be a vector sequence characterizing an ut-
terance from the source speaker, and Y = [y1, y2, . . . , yny

] be that
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of the target speaker. When xt is given, the optimal parameter gen-
eration of yt is based on the conditional probability P (yt|xt). The
important points of GMM-based VC are how to derive this probabil-
ity and how to optimize it for the parameter generation.

In voice conversion based on the joint density GMM, P (yt|xt)
is derived from the probability density of z = [x�, y�]�, i.e., the
joint vector of the source and the target feature vectors. The no-
tation � denotes transposition of the vector. The joint probability
density of the source and the target vectors is modeled by a GMM
for the joint vector zt as follows:

P (zt|λ(z)) =
MX

m=1

wmN (zt; μ
(z)
m ,Σ(z)

m ), (1)
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where N (zt; μ
(z)
m ,Σ

(z)
m ) denotes the Gaussian distribution with

mean vector μ(z)
m and covariance matrix Σ

(z)
m , m is the mixture

component index, and the total number of mixture components is
M . The weight of the m-th component is wm. Deriving P (yt |xt)
with the above parameters and minimizing the mean square error, a
mapping function F(·) to convert the source vector xt to the target
vector yt is derived as

F(xt) =
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On the other hand, our MIVC focuses on the following optimiza-
tion problem of P (yt|xt) derived by the Bayes rule:

ŷt = argmax
yt

P (xt|yt)| {z } P (yt)| {z } . (5)

from joint density model from speaker model

Voice conversion should have two important functions; to ensure the
proper correspondence of the source features to the target ones that
keeps the linguistic content, and to model the speaker individuality
of the target. In Equation 5, the rst term is derived from the joint
density model as Equation 1 and realizes the former function. The
second term P (yt) is derived from the speaker GMM trained by
a non-parallel corpus of the utterances of the target speaker, and it
corresponds to the latter function.

From the following likelihood function based on Equation 5, a
parameter generation algorithm is derived 1. Let λ(s) be the param-
eters of the speaker model.

L(yt; xt, λ
(z), λ(s)) � P (xt|yt, λ

(z))P (yt|λ(s)). (6)

For the optimum solution ŷt to maximize the function L, the auxil-
iary function with respect to ŷt is derived [5]. Finally the following
updating equations are derived:

ŷt =
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γm,t = P (m|yt, λ
(z)), γn,t = P (n|yt, λ

(s)), (8)

1As well as a language model weight in ASR, a weight factor to control
the balance between the models also can be derived.

where μn and Σn are the mean vector and the covariance matrix of
the n-th component in the speaker GMM, and

E
′(y)
m,t = μ(y)

m + Σ(yy)
m Σ(xy)+

m (xt − μ(x)
m ), (9)
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The notation + denotes the pseudo-inverse of the matrix. For the ini-
tial values of γm,t and γn,t, P (m|F(xt), λ

(z)) andP (n|F(xt), λ
(s))

are used respectively. Equation 7 becomes the weighted summation
of the effects from the joint density model and those from the
speaker model. Thus, MIVC can overcome the sparse parallel data
problem by reducing the over-estimation effects of the joint density
parameters by the speaker model.

3. PARAMETER GENERATION USING DYNAMIC
FEATURES AND MODEL OPTIMIZATION

3.1. Constraint from dynamice features

In the frame-by-frame mapping where the correlation of the feature
vectors is ignored, the discontinuity of the parameter trajectory be-
comes a problem. In MIVC, this is more serious than the conven-
tional VC, because even slight skips worse affect the perceptual qual-
ity of the whole sentence since each frame in the sequence is con-
verted more precisely. Besides, skips can occur more often because
the speaker model of the target is independent of the source fea-
tures. To compensate for the discontinuity, several approaches that
smooth the output parameter sequence have been proposed. Chen
et al. applied a median lter and a low pass lter for the parame-
ter generation in VC to smooth the parameter trajectory [8]. Toda
et al. proposed the maximum likelihood estimation of the spectral
parameter trajectory considering dynamic features [9].

In this paper, we also employ the parameter generation consid-
ering dynamic features to our MIVC by the similar manner as that of
the approaches in [9]. From here, let a time sequence of the source
features and that of the target ones be X = [X�

1 , X�
2 , . . . , X�

T ]�

and Y = [Y �
1 , Y �

2 , . . . , Y �
T ]�, respectively. X t = [x�

1 ,Δx�
1 ]�

andY t = [y�
1 ,Δy�

1 ]� consist of static and dynamic features. λ(Z)

and λ(S) are trained by these features as well as the conventional
MIVC. A time sequence of the converted feature vectors ŷ in MIVC
is derived as follows:

ŷ = argmax
y

P (X |Y , λ(Z))P (Y |λ(S)) (11)

subject to Y = W y, (12)

whereW denotes the matrix to extend the static feature sequence to
the static and dynamic feature sequence. By the similar manner as
that in [9] and [5], we derive the following updating equations:
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4577



Compared Equation 13 withMLE-based method in [9], the proposed
generation has the similar form, but it includes the effects of the inde-
pendent speaker GMM. Compared it with Equation 7, the proposed
generation is regarded as MIVC constrained from dynamic features.
Thus the proposed generation is advanced from both the MLE-based
method and the conventional MIVC.

3.2. Model optimization using an information criterion

For controlling the complexity of statistical models, information cri-
teria that contain the number of free parameters as the penalty factor
are often used [11]. Bayesian information criterion (BIC) de ned by
the following equation is adopted in some studies:

BIC = −2 log(L) + k log(n), (19)

where L is a likelihood function of a model, k is the number of free
parameters in the model, and n is the number of training data for
the model. The second term works as the penalty of the complicated
model structure. BIC is equivalent to MDL when Gaussian distribu-
tions are focused on. In our case, however, BIC does not perfectly
work for the model optimization. For example, in the case of a male
speaker GMM trained by 50 sentences, N = 128 or 256 should
be optimal according to BIC. However, the optimal N derived from
the distorion is actually 16 in the previous study [5]. To decide the
number of mixtures in the speaker GMM for MIVC, we should also
consider mutual in uences between the joint density model and the
speaker model. Then we modify BIC to the following information
criterion considering both the models:

BIC′ = −2 log(Lzs) +
nz

ns
(k log(ns)) , (20)

where Lzs means the likelihood function of the speaker model for
the training data of the joint density model, ks is the number of free
parameters in the speaker model, nz and ns are the number of train-
ing data for the joint density model and the speaker model, respec-
tively. The former term in Equation 20 focuses on the mutual in u-
ences between both the models, and the latter means the penalty fac-
tor for the complicated speaker GMM. Although Equation 20 is de-
rived heuristically, we preliminarily use it for our MIVC. For further
improvements, we are planning to deal with MIVC on a Bayesian
framework including the optimization of model structure [12]. To
optimize the model structure, the number of mixtures that minimize
Equation 20 is selected.

4. EXPERIMENT

4.1. Experimental conditions

To evaluate the performance of parameter generation using dynamic
features in MIVC, voice conversion experiments using Japanese sen-
tences were performed. This experiment used speech samples from
5 speakers (MSH as the source, MMY, MTK, FKS, and FTK as the
targets) in the ATR Japanese speech database B-set [13]. The rst
letters of the speaker names correspond to gender. This database
consists of 503 phonetically balanced sentences. They are divided
into 9 subsets (subset A to I) consisting of 50 sentences and sub-
set J consisting of 53 sentences. We selected the subset J for test
data. For training of the joint density models, one sentence pair was
used. The total number of mixture components (M ) was xed to 8
for the methods without dynamic features, and 16 for the methods
using dynamic features. On the other hand, for the speaker GMMs,
50 sentences in the subset I were selected and the GMM for each
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Fig. 1. Results of averaged distorion as a function of N . M is 8 for
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Fig. 2. Results of subjective evaluations.

speaker was trained. The number of mixture components for the
speaker GMM (N ) was varied from 2 to 128. On the other hand,
the model optimization based on Equation 20 was also carried out.
The number of iterations for Equation 7 and 13 was xed to 5. We
used 24-dimensional mel-cepstrum vectors for spectrum represen-
tation. These are derived by STRAIGHT analysis [14]. Aperiodic
components are xed to −30 dB at all frequencies. The power co-
ef cient and the fundamental frequency were converted in a simple
manner that only considers the mean and the standard deviation of
the parameters. We compared the MMSE-based method (Eq.3, w/o
Δ), the MLE-based method (Eq.13, with Δ), and MIVC with and
withoutΔ parameters.

4.2. Effects of dynamic features

We evaluated the effects of dynamic features by both the objective
and the subjective evaluations. For the objective evaluation, we eval-
uated the conversion performance using mel-cepstral distortion be-
tween the converted vectors and the vectors of the targets. For the
subjective evaluation, a listening test was carried out to evaluate the
naturalness of converted speech and conversion accuracy for speaker
individuality. The test was conducted with 10 subjects to compare
the utterances converted by the MIVC methods with and without dy-
namic features. For the MIVCmethod without dynamic features, the
number of mixtures of the joint density model (M ) was xed to 8,
and the number of mixtures of the speaker GMM (N ) was 16. For
the MIVC method with dynamic features, the number of mixtures of
the joint density model (M ) was xed to 16. We selected the optimal
number for each speaker as the number of mixtures of the speaker
GMM (N ). To evaluate naturalness, a paired comparison was car-
ried out. In this test, pairs of two different types of the converted
speech samples were presented to subjects, and then each subject
judged which sample sounded better. To evaluate conversion accu-
racy, an RAB test was performed. In this test, pairs of two different
types of the converted samples were presented after presenting the
reference sample of the target speech. The number of sample pairs
evaluated by each subject was 24 in each test.
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Table 1. The optimal and selected numbers of mixtures for the
speaker GMM from BIC and BIC’. The values in parentheses mean
the mel-cepstral distortion on each condition.

speaker Optimal BIC [Eq.19] BIC’ [Eq. 20]
MMY (w/oΔ) 16 (4.54) 128 (4.63) 32 (4.58)
MTK (w/oΔ) 16 (4.53) 256 (4.63) 64 (4.56)
FKS (w/oΔ) 16 (4.80) 256 (4.85) 16 (4.80)
FTK (w/oΔ) 16 (4.90) 256 (5.11) 64 (5.04)
MMY (withΔ) 128 (4.46) 128 (4.46) 64 (4.48)
MTK (withΔ) 64 (4.49) 256 (4.56) 64 (4.49)
FKS (withΔ) 8 (5.16) 128 (5.23) 32 (5.26)
FTK (withΔ) 32 (5.00) 128 (5.16) 64 (5.08)

Figure 1 shows the result of average mel-cepstral distortion for
the test data as a function of the number of mixture components of
the speaker GMM and Figure 2 shows preference scores as the re-
sults of the subjective evaluation. From Figure 1, compared with
MMSE and MLE, MIVC results were better. These results show
that MIVC appropriately compensated for the sparse data problem
of the joint density model. In comparison of MIVC methods by mel-
cepstral distortion, dynamic features reduced the mel-cepstral distor-
tion in the case of male to male conversion, while they did not in the
case of male to female conversion. On the other hand, according
to the subjective scores, MIVC with dynamic features outperformed
MIVC without dynamic features in both the cases; intra-gender and
cross-gender. In Figure 1, the similar results also can be found be-
tween the MMSE method and the MLE method. That is to say, it
is dif cult to evaluate the effects of dynamic features precisely by
mel-cepstral distortion. However, the subjective scores show the ef-
fects that the discontinuity of the spectral trajectory was mitigated
by considering the constraint of dynamic features, and the percep-
tual qualities of the converted speech were improved.

4.3. Effects of model optimization

Table 1 is the comparison of the model optimization for each target
speaker. The left column in Table 1 is the optimal number of mix-
tures selected by the mel-cepstral distortion of MIVCmethods. Both
BIC and the modi ed BIC (BIC’) constantly worked well for the
model optimization. This result con rmed the effects of information
criteria for the model optimization. In the case that dynamic features
are not used, the model optimization based on BIC’ selected better
models than those selected by BIC. That is to say, BIC’ appropri-
ately captures the in uence from the joint density model. Although
the proposed information criterion is derived heuristically, the in-
uence from the joint density model trained by a little amount of
corpus could be properly included in this criterion. On the other
hand, in the case that dynamic features are used, selected models by
BIC and BIC’ were comparable to both of them. In order to derive
more robust optimization of model structure, it is required to deal
with MIVC on a full Bayesian framework [12].

5. CONCLUSIONS

We have proposed two approaches for improving model-integration-
based voice conversion (MIVC); the parameter generation using the
constraint of the dynamic features and the model optimization ap-
proach for the speaker GMM based on the information criterion
where mutual in uences between the joint density model and the
speaker model are considered. These approaches mitigate the dif -
culties with MIVC; the discontinuity through the parameter trajec-

tory and the optimization of model structure for the speaker model.
For further improvements of the conversion performance, we are
planning to deal with MIVC on a Bayesian framework, which can
use the prior knowledge to both the models and apply appropriate
selection of model structures for both the models [12].
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