
A COMPARATIVE ANALYSIS OF DYNAMIC NETWORK DECODING

David Rybach, Ralf Schlüter, Hermann Ney

Human Language Technology and Pattern Recognition, Computer Science Department,
RWTH Aachen University, 52056 Aachen, Germany

{rybach,schlueter,ney}@cs.rwth-aachen.de

ABSTRACT

The use of statically compiled search networks for ASR sys-
tems using huge vocabularies and complex language models
often becomes challenging in terms of memory requirements.
Dynamic network decoders introduce additional computa-
tions in favor of significantly lower memory consumption. In
this paper we investigate the properties of two well-known
search strategies for dynamic network decoding, namely his-
tory conditioned tree search and WFST-based search using
dynamic transducer composition. We analyze the impact of
the differences in search graph representation, search space
structure, and language model look-ahead techniques. Ex-
periments on an LVCSR task illustrate the influence of the
compared properties.

Index Terms— LVCSR, WFST, HCLT, beam search

1. INTRODUCTION

Recent LVCSR systems for unconstrained domains, morpho-
logically rich languages, and spontaneous speech input use
huge vocabularies and complex language models. Decoders
using static search networks, which are known to be very ef-
ficient, may exceed memory constraints, especially if the lan-
guage model (LM) used for decoding is not simplified. Dy-
namic network decoders, which generate the required parts
of the search graph on demand during the search, have much
lower memory requirements.

In this paper, we compare two search strategies for dy-
namic network decoding. The history conditioned lexical tree
(HCLT) search is a well known strategy for dynamic network
expansion [1]. Weighted finite state transducers (WFST) are
widely used for the construction and representation of static
search networks [2]. Lazy (or on-the-fly) transducer compo-
sition [3] allows us to use the WFST framework also for dy-
namic network decoding. We use the concept of composition
filters [4] for efficient dynamic composition. Other methods
for WFST-based dynamic network decoding, like on-the-fly
hypothesis rescoring [5] are not part of our analysis.

In [6] the HCLT search is compared to decoding using
a static WFST-based search network. The authors of [7]
describe optimization techniques for a dynamic network de-
coder and compare its performance to a static WFST-based
decoder. In contrast to publications comparing static to dy-
namic network decoding, this paper focuses on the particular

This work has been funded in part by the Google Research Awards Pro-
gram and was partly realized as part of the Quaero Programme, funded by
OSEO, French State agency for innovation.

properties of the search strategies for dynamic network de-
coding.

We used our well-proven HCLT decoder [8] and a re-
cently developed WFST-based decoder, which uses the Open-
Fst toolkit [9], to investigate the impact of the search strate-
gies’ distinctive properties on an LVCSR task.

Section 2 gives a review of the investigated search strate-
gies. In Section 3 we describe their differences. Section 4
presents the experimental results which are concluded in Sec-
tion 5.

2. SEARCH STRATEGIES

In the search process, the most likely word sequence for the
observed speech signal is determined by applying a one-pass
search strategy based on dynamic programming [10]. In a
dynamic network decoder, the search space is constructed dy-
namically by integrating parts of the LM as needed during the
search. Beam search avoids an exhaustive search and focusses
the search on the most likely partial hypotheses.

2.1. HCLT Decoding

The history conditioned lexical tree decoder uses a lexi-
cal prefix tree as representation of the pronunciation dic-
tionary [1, 10]. In our decoder, the so called state tree is
constructed using the tied HMM state sequences of the pro-
nunciations for the words in the vocabulary. Words occur at
the leaf nodes of the tree.

In order to apply the probabilities of the LM, search hy-
potheses have to be separated by their predecessor words. For
an n-gram LM, only the most recent n -1 words have to be
considered. Thus, the search space is structured by history
conditioned ”tree copies”. A physical copy of the tree is ob-
viously not required, but rather the computation of a table
Q(t, h, s) where t is the time frame, h a history, and s is a
state in the prefix tree. Q(t, h, s) is the score of the best hy-
pothesis at time t ending in state s of the tree copy for history
h. At word boundaries the recombination is carried out on the
word level, merging hypotheses with equivalent histories.

Pruning is performed both on the state level and the word
end level. The pruning of word ends limits the number of
active tree copies. The acoustic pruning can be refined by
incorporating the LM probabilities as early as possible using
language model look-ahead [11]. The anticipated LM proba-
bility for a certain state in the tree is approximated by the best
word end reachable. For efficiency only a truncated history
is used to compute the LM scores. This look-ahead score is
incorporated in the pruning process by combining it with the
probability of the state hypothesis.

For the use of across word context dependent models the
tree structure has to be modified [12]. At word ends, different
states are introduced for all possible successor phones, form-
ing a fan-out. The root state is split into states for every phone
pair. From the fan-out states only valid transitions to one of
the root states are considered.

2.2. WFST-based Decoding

In the WFST-framework all knowledge sources are repre-
sented by weighted finite state transducers. The LM is rep-
resented by a transducer G, L is a phone to word transducer
derived from the pronunciation dictionary, and C encodes the
context dependency of the acoustic models. These transduc-
ers are combined by the finite-state operation of composition
as C ◦L◦G. This composed transducer has tied HMM labels
on the input side and words as output labels. The HMM states
are generated dynamically during decoding in our system.

The composition of two transducers can be performed us-
ing lazy evaluation, by computing the arcs of a state only
when it is discovered [3]. In the dynamic network decoder,
the composition of (C ◦ L) with G is computed on-the-fly.
Several issues have to be considered for this composition to
be efficient, which are solved by using special composition
filters [4, 13]. These composition filters provide an online
pushing of labels and weights, which prevents the expansion
of useless paths and provides an early incorporation of LM
scores using weight pushing.

Using the same notation as in the previous section, the
decoder computes Q(t, (sL, sG)) where (sL, sG) is a tuple of
states from the (C ◦L) and the G transducer respectively. The
decoder itself does not need to distinguish between a static
transducer and a dynamically composed one. The LM recom-
bination and the weight pushing are performed transparently
by the on-the-fly composition procedure.

3. COMPARISON

The search strategies described in the previous section share
the same principles, but differ in several aspects described in
the following sections.

3.1. Search Graph

The C ◦ L transducer and the state tree both encode the pro-
nunciation dictionary with context dependent phone models.
A determinized L is equivalent to a lexical prefix tree on con-
text independent phone level. Context dependency – within
words and across words – is introduced by the composition
with C after building the closure of L. An additional mini-
mization of L merges common suffixes.

The state tree is determinized on the tied HMM state
level, common suffixes are not shared. The fan-out and fan-in
required for across word modelling do not account for the
HMM state model tying, thereby increasing the size of the
search graph.

3.2. Search Space Structure

In the HCLT search, the search space is structured by word
histories of length n -1 for an n-gram LM. All words of the
vocabulary can be reached from the root state of the tree, thus
the full history is required to compute their LM probabilities.

The sparsity of the LM is not exploited in this strategy. The
WFST-based search structures the search space by states in
the G transducer which accounts for the backing-off in the
LM. However, a word can be hypothesized in both the full
context and in all backing-off states reachable by epsilon tran-
sitions. Due to the label pushing and minimization, hypothe-
ses can be recombined before the actual word end is reached.

The potential search space of the HCLT strategy has a size
of O(V n−1

·S) with V the size of the vocabulary, n the order
of the LM, and S the size of the state tree. The size of the
search space for the WFST strategy depends on the size of the
G transducer which is proportional to the number of n-grams
in the LM. However, only a small fraction of the search space
needs to be generated during the decoding.

3.3. Active Search Space

The size of the active search space depends on the degree
of redundancy in the search graph and – more importantly
– on an effective pruning. The early incorporation of the
LM is crucial for distinguishing promising hypotheses from
unlikely ones. The HCLT decoder’s LM look-ahead uses a
truncated history to calculate an approximative LM score. In
contrast, the WFST-based decoder can use the full history.
Furthermore, the look-ahead considers only the score of the
best reachable word, whereas weight pushing accounts for the
score of all reachable words (if the log semiring is used).

Experiments showed that it is important to incorporate the
look-ahead score as early as possible. Our decoders prune
state hypotheses already before the calculation of acoustic
likelihoods using anticipated pruning taking the look-ahead
or arc weight into account.

3.4. Word Boundaries

Word boundaries are obvious in the HCLT search space,
which facilitates the assignment of word start and end times
as well as the generation of word lattices. In the transducer,
word labels can be moved before or behind the last phone
of a word by transducer optimizations or the composition
with a shifted C transducer. Leaving an arc with an output
label does not necessarily correspond to the true word end.
In our WFST-based decoder, we exploit the word boundary
information of the context dependent phone models to detect
transitions between words.

3.5. Non-speech Events

Non-speech events, like silence and noise, cause problems,
because they do not perfectly fit in the transducer-based
framework, if they are not part of the LM [14]. If noise and
silence tokens are required in the decoder output, they have
to occur in the G transducer. Furthermore, if weight pushing
using the log semiring is used, then we have to assign them
some weight [15]. If non-speech events shall preserve the
language model context, loop transitions have to be added for
every state in G and each non-speech event, increasing the
size of G. The HCLT decoder however does not require LM
scores for all tokens.

 14

 15

 16

 17

 18

 19

 20

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

W
E

R
 [

%
]

RTF

HCLT 1-gram LA
HCLT 2-gram LA

WFST
WFST ST

Fig. 1. Real-time factors for the HCLT and the WFST decoder
using different search graphs and look-ahead (LA) sizes.

4. EXPERIMENTAL RESULTS

We evaluated the influence of the discussed differences using
our LVCSR system for English parliamentary speeches. The
ASR system is described in the following section, followed
by a presentation and discussion of the experiments.

4.1. Recognition System

The decoders use a baseline acoustic model (AM) for the
automatic transcription of European Parliament Plenary Ses-
sions (EPPS) in English as described in [16]. The dictionary
contains 53K words with 59K pronunciations, modeled us-
ing 45 phones and 6 non-speech pseudo-phones. The AM
consists of 900K densities for 4500 Gaussian mixtures mod-
elling generalized triphone states with across word context
dependency and using word boundary information. The 4-
gram LM used contains 7.4M n-grams. The test set comprises
644 segments with a total duration of 2.85h with about 27K
words in total. The runtime measurements were performed
on a 2.8 GHz Intel Core2.

4.2. Experiments

In a first experiment we compared the runtime efficiency of
both decoders. Figure 1 shows the word error rate (WER)
as function of the real time factor (RTF), i.e. processing time
divided by audio duration. The results show that the WFST-
based decoder runs about 40% faster achieving the same
WER. A detailed profiling (see Figure 2) unveils that in both
decoders ∼60% of the computation time is spent for acoustic
score computations (quantization, SIMD instructions, and
batched computations are used). The runtime required for
the composition (20%) is less than the sum of the costs for
word end-handling (11%), i.e. LM score computation and re-
combination, and LM look-ahead score computation (19%).
The state expansion in the WFST-based decoder requires
more computation time (15% vs. 6%) because of the dynamic
expansion of HMM states.

Figure 3 shows that the number of state hypotheses is very
similar for both decoders. The number of (batched) acous-
tic score computations in the HCLT decoder is 25% higher
though, due to more variation in the hypothesized HMM state
models, which causes the difference in absolute AM compu-
tation time in Figure 2.

In order to analyze the effect of differences in the search
graph size, we converted the state tree of the HCLT decoder
to a transducer and used it instead of C◦L (denoted by WFST

WFST HCLT

R
T

F

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 acoustic model

state expansion
word end handling
LM look−ahead

composition

pruning

other

Fig. 2. Profiling of the HCLT and the WFST decoder. The re-
spective pruning values were chosen to yield the same WER.

 14

 14.5

 15

 15.5

 16

 16.5

 17

 17.5

 18

 0 2000 4000 6000 8000 10000 12000 14000

W
E

R
 [

%
]

state hypotheses

HCLT
WFST

WFST ST

Fig. 3. WER vs. average number of active state hypotheses.

ST). The conversion required adding closure transitions for all
word ends in the state tree. We applied factorization to exploit
the decoder’s dynamic expansion of HMM states. The size of
these graphs is shown in Table 1. The state tree based graphs
are larger, because of the fan-in and fan-outs for context de-
pendent word transitions. The higher number of arcs in the
state tree transducer compared to the regular state tree is due
to the closure transitions for each word end in the tree. From
Figure 3 can be seen, that the number of state hypotheses is
about the same or even slightly lower compared to the smaller
C◦L transducer. However, the number of active arcs is higher
in the state tree transducer and the higher out-degree requires
more computations, resulting in a higher RTF (cf. Figure 1).

The active part of the search graph is only a small fraction
of the potential search graph. The HCLT search has an aver-
age number of 60 active tree copies. From the 37.6M states
in the composed transducer of the WFST search, only 624K
states are visited on average during the decoding of a segment.

The impact of the LM look-ahead and weight-pushing is
shown in Figure 4. Here we included an experiment with full-
history LM look-ahead scores, which results in a too high
RTF for practical use, but illustrates the impact of the trun-
cated histories. Furthermore, the graph shows the impact of
the semiring used for weight pushing in the WFST transducer.
Both full histories and the log semiring result in a lower num-
ber of state hypotheses. The number of state hypotheses in
the HCLT search using the full history is lower compared
to the WFST decoder, which can be explained by the addi-
tional word-end pruning step. Using a unigram look-ahead
increases the active search space significantly, but the compu-
tation of the look-ahead scores is faster.

Table 1. Search graph size and active search space for HCLT
search, WFST search, and WFST using the state tree (ST).
The search graph size is given for the expanded (HMM state
level) transducers (without G). The number of active state
hypotheses is given for experiments yielding the same WER
and using the same pruning threshold f respectively.

state hypotheses
states arcs WER=14.7 f = 250

HCLT 2,796K 2,857K 7,995 4,863
WFST ST 1,350K 4,122K 5,247 6,571
WFST 440K 588K 6,715 8,423

 0

 5000

 10000

 15000

 20000

 3900 4000 4100 4200 4300 4400 4500

#
 s

ta
te

 h
y
p

o
th

e
s
e

s

word errors

14.6% 15.4% 16.1%

HCLT 1-gram LA
HCLT 2-gram LA
HCLT 4-gram LA

WFST tropical
WFST log

Fig. 4. Number of active states hypotheses as function of the
absolute number of word errors for different LM look-ahead
(LA) histories and semirings used for weight pushing. The
corresponding WER is shown at the top of the plot.

5. CONCLUSIONS

The experiments in the previous section show that the search
graph, the search space structure, and the early incorporation
of LM probabilities affect the decoder performance, although
only slightly. The search graph of the WFST decoder benefits
from the smaller fan-out for across word transitions, which
do not enlarge the number of state hypotheses but increase
the costs for state expansions. We showed that the usage of
the full history as well as the incorporation of all reachable
words improve the LM look-ahead.

Moreover, the conceptually simpler structure of the
WFST decoder facilitates a more optimized implementa-
tion. In the HCLT decoder, the complexity is shifted from
the network construction to the decoder itself. Especially the
computation of look-ahead tables and the handling of word
ends require more computation time than the dynamic com-
position using look-ahead composition filters. Nevertheless,
not all of these problems are inherent. The LM look-ahead
can be performed more efficiently, as described in [7] and
[17]. The authors of [7] also describe methods for minimized
across-word transitions and early path recombination, which
are currently not used in our system.

Further investigations should analyze larger vocabularies,
more complex LMs, and the implications of the search strate-
gies for lattice construction and multi-pass decoding.

6. REFERENCES

[1] H. Ney, R. Haeb-Umbach, B. Tran, and M. Oerder, “Im-

provements in beam search for 10000-word continuous speech

recognition,” in ICASSP, San Francisco, CA, USA, Mar. 1992,

pp. 9–12.

[2] M. Mohri, F. Pereira, and M. Riley, “Speech recognition with

weighted finite-state transducers,” in Handbook of Speech Pro-

cessing, J. Benesty, M. Sondhi, and Y. Huang, Eds. Springer,

2008, ch. 28, pp. 559–582.

[3] M. Mohri, F. Pereira, and M.Riley, “Weighted automata in

text and speech processing,” in European Conference on Arti-

ficial Intelligence, Workshop on Extended Finite State Models

of Language, Budapest, Hungary, Aug. 1996.

[4] C. Allauzen, M. Riley, and J. Schalkwyk, “A generalized com-

position algorithm for weighted finite-state transducers,” in

INTERSPEECH, Brighton, U.K., Sep. 2009, pp. 1203–1206.

[5] T. Hori, C. Hori, Y. Minami, and A. Nakamura, “Efficient

WFST-based one-pass decoding with on-the-fly hypothesis

rescoring in extremely large vocabulary continuous speech

recognition,” IEEE Trans. on Audio, Speech and Language

Processing, vol. 15, no. 4, pp. 1352–1365, 2007.

[6] S. Kanthak, H. Ney, M. Riley, and M. Mohri, “A comparison

of two LVR search optimization techniques,” in ICSLP, Den-

ver, CO, USA, Sep. 2002, pp. 1309–1312.

[7] H. Soltau and G. Saon, “Dynamic network decoding revis-

ited,” in ASRU, Merano, Italy, Dec. 2009, pp. 276–281.

[8] D. Rybach, C. Gollan, G. Heigold, B. Hoffmeister, J. Lööf,

R. Schlüter, and H. Ney, “The RWTH Aachen University

open source speech recognition system,” in INTERSPEECH,

Brighton, U.K., Sep. 2009, pp. 2111–2114.

[9] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri,

“OpenFst: a general and efficient weighted finite-state trans-

ducer library,” in CIAA, Prague, Czech Republic, Jul. 2007,

pp. 11–23.

[10] H. Ney and S. Ortmanns, “Progress in dynamic programming

search for LVCSR,” Proceedings of the IEEE, vol. 88, no. 8,

pp. 1224–1240, Aug. 2000.

[11] S. Ortmanns and H. Ney, “Look-ahead techniques for fast

beam search,” Computer Speech and Language, vol. 14, no. 1,

pp. 15–32, Jan. 2000.

[12] A. Sixtus and H. Ney, “From within-word model search

to across-word model search in large vocabulary continuous

speech recognition,” Computer Speech and Language, vol. 16,

no. 2, pp. 245–271, May 2002.

[13] C. Allauzen, M. Riley, and J. Schalkwyk, “Filters for efficient

composition of weighted finite-state transducers,” in CIAA,

Winnipeg, Canada, Aug. 2010.

[14] P. Garner, “Silence models in weighted finite-state transduc-

ers,” in INTERSPEECH, Brisbane, Australia, Sep. 2008, pp.

1817–1820.

[15] C. Allauzen, M. Mohr, B. Roark, and M. Riley, “A generalized

construction of integrated speech recognition transducers,” in

INTERSPEECH, Montreal, Canada, May 2004, pp. 761–764.

[16] J. Lööf, C. Gollan, S. Hahn, G. Heigold, B. Hoffmeister,

C. Plahl, D. Rybach, R. Schlüter, and H. Ney, “The RWTH

2007 TC-STAR evaluation system for European English and

Spanish,” in INTERSPEECH, Antwerp, Belgium, Aug. 2007,

pp. 2145–2148.

[17] D. Nolden, H. Ney, and R. Schüter, “Exploiting sparseness

of backing-off language models for efficient look-ahead in

LVCSR,” in ICASSP, Prague, Czech Republic, May 2011.

